CITY COUNCIL CITY OF NEW YORK ----- Х TRANSCRIPT OF THE MINUTES Of the COMMITTEE ON ENVIRONMENTAL PROTECTION -----Х February 28, 2017 Start: 1:08 p.m. Recess: 3:16 p.m. HELD AT: Committee Room - City Hall B E F O R E: COSTA G. CONSTANTINIDES COUNCIL MEMBERS: Stephen T. Levin Rory I. Lancman Donovan J. Richards Eric A. Ulrich World Wide Dictation 545 Saw Mill River Road - Suite 2C, Ardsley, NY 10502 Phone: 914-964-8500 * 800-442-5993 * Fax: 914-964-8470

A P P E A R A N C E S (CONTINUED)

George Engelbrecht Quixotic Systems

Michael Dipaolo, President Ritter Group USA Subsidiary of Ritter Gruppe, Germany

Ronnie Mandler, President Best Energy Power

Anthony Fiore, Deputy Commissioner Chief Energy Management Officer Department of Citywide Administrative Services

Jessica Baldwin Solar Plumbing Design

John Lee, Deputy Director Buildings and Energy Efficiency Mayor's Office of Sustainability

Ellen Zielinski, Director Clean Energy and Innovations Technologies Department of Citywide Administrative Services

Doug Falconberg, President VLIB (sic) Solar

Professor Gaylord Olson Industrial Advisory Committee Mechanical Engineering Temple University in Philadelphia

Robber Kramer Kartek Goanat

Alexander Weiss Green Apple Solar, LPD

Josh Kellerman ALIGN

1	COMMITTEE ON ENVIRONMENTAL PROTECTION 4
2	[sound check, pause] [gavel]
3	CHAIRPERSON CONSTANTINIDES: Good
4	afternoon, everyone. I am Costa Constantinides,
5	Chair of the Environmental Protection Committee, and
6	today the committee will hold a hearing on Intro No.
7	1159, a local law in relation to the installation of
8	solar water heating and thermal energy systems on
9	city-owned buildings. In December of 2014, New York
10	City enacted Local Law 66 of 2014 requiring New York
11	City to reduce citywide greenhouse gas emissions by
12	80% by the year 2050. According to the city's
13	inventory of New York City greenhouse gas emissions,
14	buildings through the use of heating fuel, natural
15	gas, electricity, steam and biofuel are responsible
16	for 70% of citywide emissions. Given the fact that
17	the majority of existing buildings are expected to
18	remain beyond the year 2050, the city's base of more
19	than one million buildings represents the greatest
20	potential source of emissions reductions in New York
21	City. Solar thermal systems are an efficient and
22	economical technology to produce hot water and heat.
23	These systems are designed to convert solar radiation
24	into heat in order to provide hot water, or in some
25	setting space heating. This is different from solar

1	COMMITTEE ON ENVIRONMENTAL PROTECTION 5
2	photovoltaic systems which are designed to convert
3	solar radiation into electricity, the most common
4	solar thermal system used in residential and
5	commercial buildings if they heat water. This design
6	is referred to as solar water heaters and/or solar
7	hot water. Solar hot water systems generally consist
8	of a roof mounted collector plate, which collects hat
9	from the sun and pumps, which circulate water through
10	the collector in order to warm the water for use in
11	the building or house. There are many variations on
12	or-and more complicated versions than this basic
13	design. According to NYSERDA, depending on a
14	building's energy cost, amount of sunlight and
15	typical hot water usage, solar hot water might be an
16	affordable heating source. Specifically, NYSERDA
17	notes that in a typical residential installation
18	electric hot water users can save as much as 2,000
19	kilowatt hours annually or up to 20% of their
20	electric bill. First, solar thermal can replace or
21	offset the use of fossil fuels, which in turn reduces
22	or eliminates particulate matter and greenhouse gas
23	emissions from heat oil burning systems. Second,
24	separating domestic hot water systems from central
25	heating systems results in more efficient space
ļ	

1	COMMITTEE ON ENVIRONMENTAL PROTECTION 6
2	heating by allowing a building to downsize its
3	boilers and cease operating during summer. Third,
4	solar thermal systems can protect a building's
5	finances from spikes in commodity prices. A
6	sustainable future will require many changes in our
7	energy production choices and a variety of
8	technological advances must be employed. No
9	technology should be left behind as we seek to meet
10	the Mayor's mandate of reducing greenhouse gas
11	emissions 80% by 2050. We will have to use all too-
12	tools at our disposal to-in our end to mitigate the
13	anticipated impacts of climate change and ensure our
14	children a safe and healthy future. Now, we're going
15	to do things a little bit different today. We're
16	going to hear from a first panel that's going to be a
17	solar thermal industry panel, and then we will hear
18	from the Administration.
19	CHAIRPERSON CONSTANTINIDES: So please
20	step forward.
21	SAMARRA SWANSTON: George.
22	CHAIRPERSON CONSTANTINIDES: George
23	Engelbrecht.
24	SAMARA SWANSTON: Michael.
25	
l	I

1	COMMITTEE ON ENVIRONMENTAL PROTECTION 7
2	CHAIRPERSON CONSTANTINIDES: Michael
3	DiPaolo. Sorry if I'm pronouncing it wrong, and-and
4	Ronnie Mander-Mandler. Will you all please come-step
5	forward and Samara will Swear you in. [pause] Wait
6	a second-wait for the oath, wait for the oath.
7	[laughs] Samara is going to swear you in.
8	SAMARA SWANSTON: Gentlemen, can you
9	please raise you right hands. [pause] Do you swear
10	or affirm to tell the truth, the whole truth and
11	nothing but the truth today?
12	GEORGE ENGELBRECHT: I do. Okay. Good
13	afternoon. I'm going to read our statement first and
14	then we're going to through a Power Point. I am
15	George Engelbrecht of Quixotic Systems. We are a
16	leading solarNew York City based solar company
17	specializing in solar thermal and I'm here with
18	Michael DiPaolo. He's the President of Ritter Solar,
19	which is a—a hot water distributor company
20	international. He's the President of Ritter Solar,
21	which is a -a hot water distributor company
22	international. He's the President of Ritter Solar.
23	Quixotic Solar has worked in the city since 1999,
24	making us about the longest existing solar company in
25	the metropolitan area. In this time we've installed
I	

1	COMMITTEE ON ENVIRONMENTAL PROTECTION 8
2	solar hot water systems in New York City for
3	residential, commercial and non-profit applications.
4	Ritter Solar is the leading manufacturer of solar
5	thermal equipment used worldwide. As a solar
6	installer, who has worked exclusively with both solar
7	thermal and solar PV systems in an urban environment,
8	we believe our experience of installing and reviewing
9	the data of these two forms of solar over the past 19
10	years uniquely qualifies us to offer a solid
11	empirically based comparison of these two solar
12	technologies in New York City. Though both solar
13	thermal and solar PV generate energy from the sun
14	they use very different technologies. Solar electric
15	PV converts light to electricity and produces
16	kilowatt hours. Solar thermal converts light to heat
17	in the form of hot water. The results are therms or
18	BTUs. Though not as well understood as PVs, solar
19	thermal has widespread applications and is also very
20	economical. It is ideally suited for the urban
21	multi-story buildings such as those owned by New York
22	City, and we will take you through the reasons.
23	1. Solar thermal uses the sun more
24	efficiently actually than PV making it ideal for
25	urban environments. Today solar panels have
ļ	

1	COMMITTEE ON ENVIRONMENTAL PROTECTION 9
2	increased their efficiency up to about the range of
3	17 to 21% meaning roughly 20% of the light that hits
4	the panel will convert to electricity. In comparison
5	the average solar thermal collector now has an
6	average efficiency of between 60 and 80%. This
7	higher efficiency of solar thermal makes it practical
8	for city usage for a number of reasons. One reason
9	is that many buildings have too much shade for PV.
10	Because of it's superior efficiency, solar thermal
11	can have applications for buildings that have too
12	much shading to make PV practical. Shading rules out
13	PV for a large percentage of New York City buildings.
14	In our experience we have found that a significant
15	percentage of buildings that are not suitable for PV
16	can use solar thermal effectively. We also have the
17	issue space. Roofs that are too small to make PV
18	worthwhile. Even under the sunniest conditions a
19	roof can be too small to fit a PV system that will
20	produce a meaningful amount of electricity for the
21	building. Solar thermal produces significantly more
22	energy per square foot than PV, and thus even a small
23	system can offset a substantial portion of a
24	building's domestic hot water production. In
25	addition, solar thermal systems continue to produce
I	I

1	COMMITTEE ON ENVIRONMENTAL PROTECTION 10
2	some hot water on cloudy days, whereas PV systems
3	often cannot produce enough under these
4	circumstances. This means solar thermal production
5	is more predictable and reliable than PV. We have
6	found in our experience that in some cases it makes
7	economic sense for solar thermal and solar PV to work
8	in conjunction on particular buildings. These hybrid
9	systems provide more electricity and heat water
10	through clean renewable resources. This an example,
11	just our first slide shows you a small system that
12	uses both PV and electric. Quixotic engineered and
13	installed some-the first hybrid systems in New York
14	City. The financial returns from solar thermal can
15	be competitive with PV. The solar economics are
16	highly influenced by government incentives. PV is
17	presently enjoying a great number of incentives in
18	New York State. In spite of the fact that these have
19	generally been-there's been no NYSERDA rebate or New
20	York City property tax abatements to support solar
21	thermal, we still find that the solar thermal systems
22	can stand on their own economically. The existing
23	federal and state tax credits to-to achieve
24	relatively short paybacks, returns on investment
25	depend on a number of factors such as the size of the

1	COMMITTEE ON ENVIRONMENTAL PROTECTION 11
2	system, building fuel costs, et cetera, we find
3	payback is often less than 10 years. For buildings
4	still using heavy oils, these payback can be in the
5	six to seven-year range, and we have demonstrated
6	this through case studies, which we have developed
7	from some of our recent projects. Again, which we
8	will show in the Power Point. Now, when the projects
9	can couple tax credits with additional support either
10	from NYSERDA or through the New York City Economic
11	Development Corporation comparable to monies
12	available to PV, paybacks can be under five years,
13	sometimes approaching three. If the city is to see
14	more development in solar thermal systems for housing
15	these state and city supported programs that are
16	presenting targeting the PV industry can be-will be
17	essential to allow third-party financing for solar
18	thermal systems. Our company did the first third-
19	party financing project for six low-income housing
20	buildings in Harlem last year, and we will show that
21	in our presentation as well. Solar thermal is often
22	a better choice for residential buildings where the
23	heating and hot water usage is greater than in the
24	common electrical usage, and what you find in a lot
25	of apartment buildings is the common area charges are

1	COMMITTEE ON ENVIRONMENTAL PROTECTION 12
2	very small. So, and-and these-so you each-each
3	individual tenant has their own meter. This
4	incentivizes them to keep their usage low-low, but it
5	also means that the landlord's electrical costs are
6	only for the building's common areas and thus
7	relatively low making PV less economical. In
8	contrast, residential landlords such as the city can
9	realize significant savings from having their heat
10	and hot water produced by solar thermal. Solar
11	thermal is an excellent option for institutions such
12	as hospitals, nursing homes that use large amounts of
13	hot water. These types of facilities tend to use
14	more domestic hot water on average per person than
15	the average residential building. Hence hot water
16	systems cannot set a higher percentage of the
17	facility's overall fuel use than in an average
18	building. Solar thermal is also well suited for
19	buildings still using oil. The solar thermal system
20	will directly reduce carbon dioxide emissions whereas
21	switching to-from electricity to PV does not have the
22	same impact. One could argue that solar thermal is a
23	purer form of distributed energy systems, since its
24	energy is injected directly into the buildings'
25	heating system, the central nervous system, and

1	COMMITTEE ON ENVIRONMENTAL PROTECTION 13
2	unlike the PV system that is displacing power that is
3	produced on site, but not on site, but on a-but at a
4	central plant, possibly far removed from the building
5	in question. Finally, because of the higher
6	efficiencies we spoke of earlier, an average New York
7	City roof covered with solar thermal collectors can
8	thereby see a significant increase in admission
9	avoidance. This could be very high-it could be a
10	very high relevance in areas of the city that are
11	plagued with poor quality of air. Solar thermal
12	reduces the use and the stress on—on boilers. In
13	this area, there's-there's a tremendous amount of
14	waste heating of hot water outside the-the-the
15	heating season. Large boilers are often used to
16	create both steam and heat and hot water, but outside
17	the heating season, they run a high-run at a high
18	level and the-a higher level than is needed for
19	domestic and hot water production. This is a very
20	wasteful system. Solar thermal can create enough hot
21	water to reduce the use of the boiler outside the
22	heating season thereby increasing the longevity of
23	the boiler and creating much cleaner air in the city
24	itself. Based on our extensive experience with solar
25	in the city, we believe that solar thermal should

1	COMMITTEE ON ENVIRONMENTAL PROTECTION 14
2	play an important role in any large scale carbon
3	reduction and energy savings plan. New York City has
4	great potential in building a thriving solar thermal
5	market. This can provide many middle-class jobs,
6	cleaner air quality, through significant emission
7	reduction and reasonable rates of return for builder-
8	building owners and possible investors. We urge the
9	Council to create incentives to remote solar thermal,
10	and to consider this as an important part of its goal
11	to create a cleaner and more sustainable city. Thank
12	you for your interest. So, we can take questions,
13	but we also-but I think we wanted to step to our
14	Power Point now just to give you some specific
15	examples of projects we've worked on.
16	CHAIRPERSON CONSTANTINIDES: Is there any
17	other testimony that you're going to give?
18	GEORGE ENGELBRECHT: Say that.
19	CHAIRPERSON CONSTANTINIDES: Does anyone
20	else have testimony at the table.
21	MICHAEL DIPAOLO: [off mic] I would like
22	to give you my testimony, and then we'll do the Power
23	Point.
24	
25	
I	I

1	COMMITTEE ON ENVIRONMENTAL PROTECTION 15
2	CHAIRPERSON CONSTANTINIDES:
3	[interposing] Oh, then we'll do the Power Point-I
4	mean the Power Point.
5	MICHAEL DIPAOLO: [off mic] Got it.
6	Okay, thank you. [on mic] Good afternoon everyone.
7	My name is Michael Dipaolo. I'm the President of
8	Ritter Group USA, which a subsidiary of Ritter
9	Gruppe, Germany. Ritter Gruppe is one of the largest
10	solar thermal companies in the world, and my
11	background I spent 25 years in the boiler business
12	here in the United States operating one of the
13	largest boiler companies, and then the last ten years
14	I've been working in the solar field managing
15	Ritter's business here in the United States. So some
16	of my comments are redundant to what wasGeorge just
17	said, but I'll go through the highlights of my
18	testimony. Solar thermal uses the sun more
19	efficiently that PV, which the point I think is most
20	important to understand right now is that it also
21	provides great CO2 savings. So the conversion
22	efficiency of a solar thermal panel or systems, solar
23	thermal system is about four to five times greater
24	than the conversion efficiency of solar PV.
25	Correspondingly there is a four our five times

1	COMMITTEE ON ENVIRONMENTAL PROTECTION 16
2	greater saving in CO2. The effects of government
3	policy on market development I think is very
4	important. Increasing governmental demand for solar
5	thermal technology will allow the market to expand
6	and become more experienced thereby accelerating
7	technology innovation and increases in cost per
8	installation. The positive effects of government
9	policy on the PV market will be similar if enhanced
10	on the solar thermal market. The guys on the solar
11	thermal side feel like, you know, the-the ugly
12	stepchild because almost all the subsidiaries and
13	policy focuses on the PV side, and has-has beethe
14	solar thermal side has been relatively neglected.
15	Solar thermal helps stabilize budgets. Energy costs
16	are one of the largest items in the operating budget
17	of property managers. The vitality of electric costs
18	is small since rates are set by public utility
19	commission in subject to cost justification. Long-
20	term average inflation rate of electricity is
21	approximately 1%. However, energy costs from gas and
22	oil are highly variable, and cost price can create
23	havocs on budgets. After a solar thermal system is
24	installed a fixed energy price is known for the life
25	of the system typically 25 years. So we have much
l	

1	COMMITTEE ON ENVIRONMENTAL PROTECTION 17
2	more budget stability when we can control our thermal
3	demand. Solar thermal contributed to improve
4	building efficiency. One of our key target markets
5	is increased efficiency of buildings to reduce our
6	greenhouse gases. It's not just-renewables is one of
7	the-one of the tools, but building efficiency is-is
8	also one of them and solar thermal has great
9	opportunities in this respect. New York City has a
10	large percentage of mechanical rooms where boilers
11	are used to provide both space heating and domestic
12	hot water. These boilers are sized to cover the
13	space heating demand on the coldest winter days.
14	During the heating season these boilers have
15	operating efficiencies of 80 to 85%. When boilers
16	are running solely to provide domestic hot water,
17	typically from May to October, the efficiency is less
18	than 50%. During this summer period, solar thermal
19	systems often provide more than 90% of the energy
20	needed for domestic hot water eliminate the need for
21	running boilers. Additionally, solar thermal extends
22	the life of the boiler and reduces service calls.
23	Solar thermal has an advantage that relates to energy
24	storage. All of domestic hot water solar thermal
25	systems include storage tanks, and the heat is
ļ	

1	COMMITTEE ON ENVIRONMENTAL PROTECTION 18
2	typically available for 24 to 48 hours. While PV
3	storage is possible, it is very expensive and not
4	included in standard installations. Energy storage
5	is standard on solar thermal systems. The benefits
6	to solar thermal can be utilized after the sun sets.
7	Resiliency. To operate a solar thermal
8	system a small-a small amount of electricity is
9	needed to run the solar pump. This can be provided
10	with a small generator or a connection to an
11	emergency electric circuit. During emergencies such
12	as Hurricane Sandy, where we had large weeks, seven,
13	eight days without electricity, it is feasible to
14	provide hot water during extended periods. Time is
15	of the essence as it relates to tax credits that will
16	be phased out. The city's budget for primary energy
17	to produce heat and hot water is large. By not
18	acting now to support solar thermal installations,
19	the city is foregoing the opportunity to benefit from
20	the 30% Federal Tax Credit. The Federal Tax Credit
21	is scheduled to decline starting in 2020, and will be
22	reduced to 10% in 2022. Additionally, the city
23	should help itself by helping the solar thermal
24	industry gain state tax credits through NYSERDA and
25	the REV Program. Solar thermal systems-systems are

1	COMMITTEE ON ENVIRONMENTAL PROTECTION 19
2	as or more efficient than PV and reducing greenhouse
3	gas emissions, decreasing energy consumption of
4	buildings and converting to renewable energies. Roof
5	space is—is limited. This is like the rumble for the
6	roof, okay. Is it PV or is it thermal? What are we
7	going to put on the roof? In the urban environments
8	availability of roof space is limited. Is the-is the
9	limiting factor holding back wider utilization of
10	renewable energy? Roof space has become a valuable
11	commodity. Therefore, roof space should be allocated
12	to it's best and most productive use. Solar thermal
13	is the best application from an environmental and
14	financial perspective. Electric from utility size PV
15	fields can be transported hundreds of miles while
16	thermal en-while thermal energy has limited ability
17	to be transported. Therefore, utilization of solar
18	thermal energy is limited to on-site production and
19	consumption, gives additional rationale for
20	allocating roof space to thermal energy production,
21	and that's my testimony. [background comments] So-
22	so we put together some slides of some of the
23	projects we've worked on that just demonstrate some
24	of the-this is just a slide that-I mean it delineates
25	how solar thermal works. We all know that. So this
ļ	

1 COMMITTEE ON ENVIRONMENTAL PROTECTION 20 2 a project we bid. You want this? Yeah, go ahead, I'll-I'll jump in. 3 George. 4 GEORGE ENGELBRECHT: [laughs] Yes, 30 apartment units, 20 solar collectors that we've 5 installed this since 2011. 6 7 MICHAEL DIPAOLO: And you'll notice if you go back once, so you'll notice that's a flat 8 9 plate collected. So we're going to show technology with different types of collectors. This is the 10 11 financing on that. This-this-12 GEORGE ENGELBRECHT: So the, yeah, 13 \$129,000 system. There is a six-year payback. It 14 covers 50 to 60% of the annual hot water usage in the 15 building, and this was just with the Federal Tax Credits, and depreciation. 16 17 MICHAEL DIPAOLO: That annual hot water 18 it's-it's very common to the design of a solar 19 thermal system what we call a solar fraction of 50 to 60% meaning 50 or 60% of the domestic hot water 20 21 energy needed will come from the sun. So that solar fraction of 50 or 60% is quite common and-and should 2.2 23 be a design goal. 24 GEORGE ENGELBRECHT: So this is a project we did for the Jewish Community Center in Manhattan 25

1	COMMITTEE ON ENVIRONMENTAL PROTECTION 21
2	Island, 24 solar thermal collectors. Again, the
3	economics were excellent. They did qualify for some
4	NYSERDA funding NYSERDA, but again but that sort of
5	put them on a level playing field with PV in terms of
6	the amount of money that was available. And this is
7	a major project we just completed. We did six solar
8	hot water systems in a number of buildings up in
9	Harlem. This is the first. This another rooftop.
10	Here's another building we did and, of course, the
11	interesting thing with solar thermal in terms of
12	space we usually put it at 30 or 35 degree angle,
13	which again reduces the amount of footprint that it
14	has on a rooftop and-and space-rooftop space is-is
15	the big battle in-in the city. So a lot of times you
16	find you can-you can fit more solar thermal on a
17	roof, and you have to offset, of course, but in some
18	cases it actually works out better in terms of how
19	you are-you're utilizing the amount of space you have
20	to work with.
21	MICHAEL DIPAOLO: George if you go back
22	one slide you can see this clearly. You know, this
23	was in compliance, of course, with the Fire
24	Department regulations where you have to have a

25 landing area in the front of the building and the

1	
1	COMMITTEE ON ENVIRONMENTAL PROTECTION 22
2	back of the building, and then basically an aisle way
3	from the front to back so the Fire Department has
4	access and emergency crews. That's also one of the
5	things that takes away the space, the usable space.
6	The-the-the number of collectors here was matched up
7	to the size of the storage, and to the demand of the
8	building. So we were-we were equalizing. We don't
9	want to overproduce or under produce and we want to
10	optimize, and we were doing these six projects
11	together one thing was we were able to gain
12	efficiencies because we had a set design. So all the
13	designs in all six of these buildings are identical.
14	And we've been working with the German engineering
15	group Fermitter (sp?) with the Cortotics (sp?)
16	Engineering to come up with basically a cookie-a
17	cookie cutter design and with the goal of-of reducing
18	costs, driving costs down on the installations.
19	[pause]
20	GEORGE ENGELBRECHT: So and here is just
21	breakdown of the economics in-in terms of the
22	estimated pay back and the cost of the project. So,
23	you can see if solar thermal is done correctly and
24	it's done efficiently, you can have-you can realize a
25	very sure return on investment in New York City.

1 COMMITTEE ON ENVIRONMENTAL PROTECTION

2 MICHAEL DIPAOLO: So these systems basically 3 they offset per square foot a solar panel offsets 2.5 4 gallons of fuel oil per year. So these were all-all 5 boilers that we were integrating with.

23

6 GEORGE ENGELBRECHT: And then just to 7 show some examples, in-in a lot of cases it makes 8 sense to do a combination system. This is the hybrid 9 system we did where we combined PV and solar thermal, and this is another system where-where we utilized 10 11 both hot water and PV in conjunction. And this is a 12 small co-op and this is-this is-this is a great 13 example of, you know, where you have a building that 14 has a very small amount of common area usage in terms 15 of their electricity. So we offset the total of 16 their-their electrical use with the common area, and 17 then we-and then we are, you know, are supplying them 18 with all their domestic hot water needs for the 19 building as well. And this-this is another example 20 of a hybrid system for a single family residence, and 21 this is an example of, you know, how you can utilize 2.2 both system where you put the solar panels PV on the 23 south facing roof, but then you put the hot water panels on the west facing roof where-where they'll-24

1	COMMITTEE ON ENVIRONMENTAL PROTECTION 24
2	they'll realize their most-most efficient production
3	of heat. So, that's-that ends our testimony.
4	[background comments]
5	RONNI MANDLER: Okay, first, you know, my
6	name is Ronnie Mandler. I am the President of Best
7	Energy Power, and this is my testimony. Dear Council
8	Member, first I would like to thank the New York City
9	Council calling upon to come and testify. The solar
10	installer with the help of all advocacy agencies and
11	companies are the ones who are actually reaching out
12	to the community and promoting the clean energy of
13	solar. We are also the ones that actually makes it
14	happen. I would ask the New York City Council not to
15	push for any new legislation for solar thermal. As
16	you well—as you well know, the roof space in an urban
17	area such as New York City has limited available roof
18	space, and as such, solar thermal will always compete
19	with solar PV on that limited roof space. Solar
20	thermal is effective only about five months a year in
21	our area due to the fact that solar thermal harvests
22	the sun's heat versus solar PV, which is effective
23	365 days year because solar PV harvests the sunlight,
24	and is effective in any temperature. Furthermore,
25	any investment is evaluated by the alternative.
ļ	

1	COMMITTEE ON ENVIRONMENTAL PROTECTION 25
2	CHAIRPERSON CONSTANTINIDES: Okay.
3	RONNIE MANDLER: The return of investment
4	of solar thermal in our area is about 15 years while
5	solar PV return is about five years. The life span
6	of solar thermal is about 12 years, and it has moving
7	parts. While the life span of Solar PV is 25 years,
8	and there's no moving parts. We have to prioritize
9	what we do first, and it's obviously in solar PV.
10	Having said that, there is a new technology where
11	panels of solar thermal can be attached as a patch
12	under the solar PV. As we all know, solar PV panels
13	dissipate some heat under the panel. So if we have
14	already solar PV with a mounting system, which is
15	already installed, we can add these patches of solar
16	thermal under the solar PV. This will always—also
17	reduce substantially the cost of solar thermal. This
18	technology is new, and nothing that today is
19	available yet. I believe in two to three years, it
20	will come to market with a track record and data how
21	to do it right. So, in general what I'm saying solar
22	thermal is not bad, but we have to prioritize. So if
23	the efforts I would ask the Council to prioritize the
24	solar PV versus the solar thermal. Thank you.

1 COMMITTEE ON ENVIRONMENTAL PROTECTION 26 2 CHAIRPERSON CONSTANTINIDES: Thank you 3 for your testimony. Appreciate it. So the front-4 Michael, don't go anywhere. I have questions. [laughs] 5 MICHAEL DIPAOLO: 6 Sorry. 7 CHAIRPERSON CONSTANTINIDES: So, we're 8 looking at a difference stratocracy on buildings. 9 But before I start my question I want to acknowledge that my colleague Council Member Donovan Richards, a 10 member of the committee and Chair Emeritus from the 11 12 main floor. Thank you, Donovan for being here. So 13 looking at the different city stock, and we have 14 schools, hospitals, libraries, courthouses, 15 wastewater treatment facilities, firehouses and, you 16 know, a recreational center, police precincts. In 17 general, which types of these buildings might be able 18 to use solar thermal systems? 19 MICHAEL DIPAOLO: Well, all of them, but 20 here's what we-21 CHAIRPERSON CONSTANTINIDES: 2.2 [interposing] Well, most cost-effectively. Let's-23 let's look at--MICHAEL DIPAOLO: Anyone whose using 24 domestic hot water is a candidate. Again, buildings 25

1	COMMITTEE ON ENVIRONMENTAL PROTECTION 27
2	that have larger uses of hot water like prisons,
3	hospitals and schools typically have a very low
4	relevance of domestic hot water demand. Residents,
5	of course. Typically 25% of buildings and—and annual
6	energy goes to domestic hot water, and what we found
7	in Harlem, and these were basically six-foot walk-ups
8	for apartments per floor, we got a nice balance
9	between the roof space and the space in the-in the-in
10	the room boiler for the tank, and the demand of the
11	building. So we were able to balance that.
12	CHAIRPERSON CONSTANTINIDES: Today
13	looking at prioritization, it would be in-in-in
14	buildings where water is used quite frequently.
15	Right? You said prisons and hospitals.
16	MICHAEL DIPAOLO: Primarily like prisons
17	needs, seven being in demands, and now the schools
18	that out for three months.
19	CHAIRPERSON CONSTANTINIDES: Right.
20	MICHAEL DIPAOLO: Those that receive it
21	on a regular basis will be the first priority.
22	CHAIRPERSON CONSTANTINIDES: And looking
23	at, you know, the-what-what is the average size. You
24	showed lot of different types of roofs, a lot of
25	different types of-of potential systems. What are
l	I

1	COMMITTEE ON ENVIRONMENTAL PROTECTION 28
2	the average size, cost and payback period for the
3	projects? You said about five years or so?
4	GEORGE ENGELBRECHT: Well, like I said,
5	it depends on the incentives that are available that
6	we're finding, and it depends on the size of the
7	systems. The big differential with hot water is
8	basically now the hot water is being heated in the
9	first place, if it's-particularly if it's-if it's oil
10	and heavy then your-your payback is-is much shorter
11	than like if it was natural gas. But there-there are
12	various sizes involved, and as we said like in-in
13	terms of across buildings in cases where there isn't
14	a huge amount of electrical use in the common area,
15	and where we've taken an incredible-a large amount of
16	reworking of the electrical system to give each
17	tenant a piece of electricity from that roof, it
18	works to be more efficient to-to offset their hot
19	water usage as opposed to their electrical. So in
20	those kinds of situations apartment buildings could
21	make sense in a lot of cases to go with the solar
22	panels at this point.
23	CHAIRPERSON CONSTANTINIDES: Well, as far
24	as maintenance, does the work require any special
25	training? Well, it-it-is-it is a plumbing system. So

1	COMMITTEE ON ENVIRONMENTAL PROTECTION 29
2	there is, you know, you need-you need plumbing
3	experiences a lot. There are those aspects of it.
4	Just like the PV, you know, you need electrical
5	plans.
6	CHAIRPERSON CONSTANTINIDES: And what's
7	that-
8	MICHAEL DIPAOLO: Typically installed in
9	flaws (sic). They're all connected to the Internet,
10	and to our email addresses, and if there's any system
11	fault if the controller got that, detects. We get an
12	email that second. So, the building manager, the
13	installing engineer, whomever we wish to give really
14	our notice to, if there's a fault on the system, you
15	know, pumps can go bad, controllers can go bad, we
16	get notified right away so we can go-it's not sitting
17	there not—and were not knowing that it's not
18	operating properly.
19	CHAIRPERSON CONSTANTINIDES: Right and
20	how-how-how much of the-the cost and maintenance
21	usually, you know, cost the building owner or the
22	person who has installed that?
23	MICHAEL DIPAOLO: The pumps typically
24	have a life of ten year, and these are relatively
25	small pumps. They're-they're less \$1,000, \$800 a
I	

1	
1	COMMITTEE ON ENVIRONMENTAL PROTECTION 30
2	pump. So if you had to switch out a pump it's \$1,500
3	job. You know, there really is no moving parts other
4	than the pump and a small electrical controller.
5	CHAIRPERSON CONSTANTINIDES: Alright, I
6	mean I just want to, you know, as we look to 80 x 50,
7	I'm looking to see, well, every technology. I'm a
8	huge proponent of solar. We've had hearing on solar
9	PV and solar in-in the past, and look forward to
10	doing that in the future. I just want to make sure
11	that we're not leaving any technology behind when we
12	can potentially be heating our hot water and still
13	using photovoltaic at the same time, and if it's
14	cost-effective and it works, and we can get a good
15	payback, I think it's worth us going down this road
16	to see how we can use our roof space most effective.
17	So I-I agree with everyone here. That is a premium.
18	We have to make sure that we're doing it the right
19	way and that are not leaving any stone unturned as we
20	look to the future to meet the 80 x 50 iniaitive-
21	mandate because it's-it's a big one, and we don't
22	have time to wait especially with what we're dealing
23	with in Washington where it's good policy now. It's
24	not going to be coming from them. So I want to thank
25	you. Donovan, do you have any questions?

1	COMMITTEE ON ENVIRONMENTAL PROTECTION 31
2	COUNCIL MEMBER RICHARDS: No.
3	CHAIRPERSON CONSTANTINIDES: Alright, I
4	just want to thank you all for your testimony today,
5	and I will definitely look forward to partnering and
6	working with each of you at this table as we look to
7	expand solar even further into New York City so thank
8	you for your time.
9	RONNIE MANDLER: So thank you.
10	[background comments]
11	CHAIRPERSON CONSTANTINIDES: Hi. I'd like
12	to have Anthony Fiore from the Deputy Commissioner
13	and—and Chief Energy Management Officer for DCAS,
14	John Lee, Deputy Director of Buildings and Energy
15	Efficiency for the Mayor's Office of Sustainability,
16	and Ellen Zielinski. I hope I got that right.
17	[laughs] Director of Clean Energy and Innovations
18	Technologies for DCAS. Samara will swear you guys
19	in.
20	SAMARA SWANSTON: Can you please raise
21	your right hands. Do you swear or affirm to tell the
22	truth, the whole truth and nothing but the truth
23	today?
24	I do.
25	

1	COMMITTEE ON ENVIRONMENTAL PROTECTION 32
2	CHAIRPERSON CONSTANTINIDES: Alright,
3	sir.
4	DEPUTY COMMISSIONER FIORE: Good
5	afternoon, Chair Constantinides and members of the
6	Committee on Environment Protection. My name is
7	Anthony Fiore. I'm the Deputy Commissioner and Chief
8	Energy Management Officer for the Department of
9	Citywide Administrative Services, also known as DCAS.
10	Joining me today is Ellen Zielinski Director of Clean
11	Energy and Innovation at DCAS and Mr. John Lee,
12	Deputy of Buildings and Energy Efficiency for the
13	Mayor's Office of Sustainability. Thank you for the
14	opportunity to testify today regarding the potential
15	use of solar water heating and thermal energy systems
16	on city-owned buildings. As part of One NYC Built to
17	Last, the Climate Action Plan, this Administration
18	set forth an ambitious goal for reducing citywide
19	greenhouse gas emissions 80% by 2050 over a 2005
20	baseline known as 80 x 50. Recognizing its own
21	impact on the greenhouse gas emissions, this
22	Administration is leading by example to reduce
23	greenhouse gas emissions from municipal buildings 35%
24	by 2025. I would also like to acknowledge the
25	tremendous partnership between the administration and

1	COMMITTEE ON ENVIRONMENTAL PROTECTION 33
2	this committee. They have done a lot of great work
3	over the years with more to come. A key component to
4	reaching our greenhouse gas emission reduction goals
5	is the installation of clean energy technologies at
6	our city facilities, and we have a goal to install
7	100 megawatts or more of solar PV power generation
8	capacity on city-owned properties by 2025 the 100
9	megawatt goal. To date, we have 8.9 megawatts of
10	solar PV installed, and another 20 megawatts in the
11	process of being planned and installed. In addition
12	to standard rooftop solar PV, DCAS has actively been
13	assessing and installing alternate clean energy
14	technologies including fuel cells, battery storage
15	systems, building integrated photovoltaics, wind,
16	geothermal and solar thermal. Over the past few
17	years, 14 solar thermal systems have been installed
18	on municipal properties. As Mr. Engelbrecht
19	testified, solar thermal is best suited for buildings
20	that have a 24-hour domestic hot water demand and
21	high hot water heating costs stemming from showers,
22	swimming pools, cooking and dishwashing purposes.
23	Examples for suitable buildings would be large
24	residential buildings, dormitories or gymnasiums,
25	with around the clock hot water usage. Because of
I	

1	COMMITTEE ON ENVIRONMENTAL PROTECTION 34
2	the need for a high hot water demand, city-owned
3	buildings and operated buildings largely do not have
4	the ideal water usage characteristics needed to take
5	full advantage of the benefits and core purpose of
6	solar thermal systems, namely offsetting the fuel use
7	and cost for hot water heating. Buildings such as
8	schools office buildings, courthouses, police
9	precincts, and sanitation garages, which compromise
10	90% of DCAS' portfolio are not ideal candidates as
11	they have inadequate hot water use demand to make
12	solar thermal projects economically viable. In
13	addition, solar thermal requires dedicate maintenance
14	and oversight. Unlike solar PV, which has passive
15	systems, and only requires relatively simple
16	maintenance by an electrician, solar thermal systems
17	are mechanical systems that have many moving parts
18	including pumps, tanks, control systems, solar
19	collectors, pressurized piping and heat exchanges.
20	These systems are much more complex than solar PV and
21	they require dedicated skilled electricians and
22	plumbers to maintain. Commissioning and retro
23	commissioning of the system is also required. The
24	equipment requires regular checks and monitoring as
25	failure of system components is possible. More than
l	

1	COMMITTEE ON ENVIRONMENTAL PROTECTION 35
2	20% of the systems installed on public facilities to
3	date completely failed due to multiple reasons
4	including freezing, control system failures and
5	external system damages from birds and golf balls for
6	example and at least two other systems required
7	repair work. If one collector fails, it can shut
8	down the entire system unlike solar PV where one
9	failed panel has less negative effects on the larger
10	system. Our city agency partners have expressed to
11	us that they do not have staff that are trained in
12	solar thermal maintenance and operation. Based on
13	our experience with solar PV it is critical to have
14	adequate staffing and expertise in place to ensure
15	proper operation and system longevity. To address
16	this need for the comparatively low maintenance solar
17	PV systems of DCAS' expanding Solar PV Program, we
18	are developing an operation and maintenance plan and
19	a maintenance and repair contract. In addition, we
20	are rolling out a solar PV training course for city
21	employees so staff are knowledgeable about the solar
22	PV systems on their rooftops. No such arrangements
23	have been made for the solar thermal systems. An
24	additional and distinct programming and resources
25	would be required. DCAS worked with the New York

1	COMMITTEE ON ENVIRONMENTAL PROTECTION 36
2	Power Authority, NYPA, and the FDNY to install solar
3	thermal systems on five firehouses in 2013. The
4	total cost of the five projects was \$778,014 and had
5	an average payback of approximately 80 years. At
6	these firehouses, the hot water demand was
7	insufficient to make each project cost-effective.
8	These projects suffered from a number of problems,
9	and within one year all systems were compromised and
10	need of-and in need of repair. Three out of five
11	were not functioning entirely. The systems are now
12	being repaired. Because of the multiple components
13	that a solar thermal system contains, the rather
14	straightforward analysis to assess a building's
15	potential for solar PV is not repairable with solar
16	thermal systems. A considerable facility specific
17	engineering analysis is needed to determine if a
18	solar thermal system is feasible. An analysis of a
19	building's domestic hot water demand and heating fuel
20	costs associated with hot water supply as well as an
21	assessment for space, for collector's pipe runs
22	penetrations, existing equipment locations, and space
23	for the additional equipment like heat exchangers.
24	Given this complex process, it is much more difficult
25	to determine the solar thermal potential for a city
l	
1	COMMITTEE ON ENVIRONMENTAL PROTECTION 37
----	--
2	building. Unlike solar PV, DCAS and city agencies do
3	not have the resources to assess every city—city
4	building for solar thermal. Most important, solar
5	studies have demonstrated that electrification of
6	heating systems combined with the renewable energy
7	supply will be needed to obtain the levels of
8	greenhouse gas emission reductions necessary to
9	prevent catastrophic climate change impacts. The
10	city's own studies conducted with a broad range of
11	stakeholders including leaders in real estate,
12	architecture, engineering, construction, finance,
13	affordable housing and Environmental Justice came to
14	the same to the same conclusion. Solar thermal
15	systems compete for the same roof space used for
16	solar PV installations that would support
17	electrification of heating systems, and could
18	significantly delay a necessary transition to
19	electrification. Importantly, however, we recognize
20	that solar thermal systems can be good practice in
21	New York City in setting this where substantial hot
22	water demand can be met with renewable energy rather
23	than fuel oil. As the technology continues to
24	improve, the use cases for solar thermal may also
25	expand. This recognition is why we worked with the

1	COMMITTEE ON ENVIRONMENTAL PROTECTION 38
2	Committee on Environmental Protection last year to
3	allow for the exploration of solar thermal technology
4	as an alternative sustainable roof use when crafting
5	Local Law 24, which supports our existing solar PV
6	program on city-owned buildings. However, with the
7	knowledge that solar thermal is unlikely to be the
8	most environmentally and fiscally beneficial option
9	for the city's portfolio of buildings, we offer our
10	continued partnership to work with this committee to
11	explore alternative means of supporting the private
12	marker-market for solar thermal in New York City.
13	While our research demonstrates the electrification
14	of heating systems is currently the more effective
15	path to reduce on-site combustion for heating needs,
16	we should nevertheless offer support for New York
17	residents and businesses who choose to explore solar
18	thermal based on personal preference. DCAS is fully
19	committed to pursuing clean energy technologies.
20	However, based on our experience with the solar
21	thermal systems implemented to date, the opportunity
22	for effective use of these systems across the
23	portfolio of municipal buildings is limited. For all
24	of the reasons just elucidated, and the significant
25	effort required to perform a reasonable facility-

1	COMMITTEE ON ENVIRONMENTAL PROTECTION 39
2	facil—excuse me—feasibility study, it does not appear
3	to be a prudent investment at this time. DCAS takes
4	seriously its responsibility to lead by example to
5	help the city attain its 80 x 50 greenhouse gas
6	reduction target, particularly by demonstrating
7	innovative clean energy technologies. To that end,
8	we are certain that we can find common ground with
9	the Council to help move away from dependency on
10	fossil fuels. We support the continued dialogue with
11	the solar thermal industry, and our agency partners
12	to unlock new opportunities for solar thermal as the
13	technology progresses to speed up the deployment of
14	clean energy technologies and improve air quality and
15	public health outcomes. Thank you again for the
16	opportunity to testify this afternoon. My colleagues
17	and I would be happy to answer any questions you may
18	have.
19	CHAIRPERSON CONSTANTINIDES: Thank you.
20	Do you guys have any other testimony as well or?
21	Okay. I would like to recognize my colleague Eric
22	Ulrich, our Council Member Queens. Thank you for
23	being here, Eric. So, I'll begin at the same place
24	that you started where I definitely value the
25	partnership that we've had over the years. You know,
I	

1	COMMITTEE ON ENVIRONMENTAL PROTECTION 40
2	this is something that we-we've done a lot of good,
3	and we will continue to do a lot of good together, I
4	look forward to continuing that. So everything that
5	we talk about today is in-within that framework. You
6	know, and I bought this phone a couple of years ago.
7	You know, it was the best technology possible, and
8	now it's about three years old and I think it's
9	probably ready to be retired because it doesn't do
10	all the things that everyone is looking to do, and
11	iPhone 7 and everything else. My point with that is
12	that over time technology changes, it improves. We
13	always have to sort of be looking out for how the
14	technology is—is evolving over time, and how we can
15	see good things happen not just set something aside
16	because we've had previous bad experience in-in
17	previous years. So looking at the firehouses, I—I
18	guess the-the main factors and the long payback was
19	just because we put them on buildings that were the
20	high—the hot water usage was just not high enough to
21	generate the payback, correct?
22	DEPUTY COMMISSIONER FIORE: That's
23	correct. The hot water usage was not high enough as
24	the previous panel I think testified to as well and
25	

1COMMITTEE ON ENVIRONMENTAL PROTECTION412I'd like to point out that DCAS has its finger on the3pulse of--

4 CHAIRPERSON CONSTANTINIDES: [interposing] 5 Uh-huh.

DEPUTY COMMISSIONER FIORE: -- of clean 6 7 energy technology markets. We have a specific 8 program geared towards innovation, and innovative 9 technologies. So we are-are of the same opinion as you not to set any technology aside, but to continue 10 11 to watch how technology evolves, and how the markets 12 around those technologies evolved, and to integrate 13 and scale those technologies at the appropriate time. 14 CHAIRPERSON CONSTANTINIDES: Right, and

15 as-as you look at certain buildings so I mean there 16 are certain buildings that it-it may not work for, 17 right, and we'd sort of come to that same conclusion 18 with the installers and-and-but in-in buildings where 19 there are a high water usage, solar thermal could 20 have some benefit if-if, you know, especially when 21 we-have a large enough roof space to support both PV 2.2 and solar thermal, and I could see how we have 25% of 23 the-they had talked about before 25% of the-the heat for hot water. We could definitely utilize our 24

COMMITTEE ON ENVIRONMENTAL PROTECTION 42
 system such as solar thermal to get us to do both,
 right?

4 DEPUTY COMMISSIONER FIORE: Yeah, we-we believe that there is a place for solar thermal. We 5 believe it's more of a niche application, but there 6 7 are certain buildings where the economics of it would 8 be better than many other buildings most of which in 9 DCAS' portfolio don't fit the water consumption patterns that would make it cost-effective, and I'd 10 11 also like to bring back to the-the longer term point 12 of if we're going to electrify these systems, which 13 many studies including the City's study indicated it 14 was the best path to go down to. We want to be 15 careful not to do things that could delay that. 16 CHAIRPERSON CONSTANTINIDES: [interposing] 17 And how-18 DEPUTY COMMISSIONER FIORE: [interposing] 19 And with that being said, we-we do believe that 20 there-there are applications where this has-has 21 better economics and it's a good thing to do. 2.2 CHAIRPERSON CONSTANTINIDES: And as far 23 as this-this electrification you talked about, how far off are we from seeing that technology, getting 24

1	COMMITTEE ON ENVIRONMENTAL PROTECTION 43
2	there? I mean where are we on that particular
3	technology?
4	DEPUTY COMMISSIONER FIORE: So, I would
5	reflect a comment that you made earlier that, you
6	know, time is of the essence
7	CHAIRPERSON CONSTANTINIDES:
8	[interposing] Right.
9	DEPUTY COMMISSIONER FIORE:right, and
10	the technology is there. It's not that the
11	technology has to develop, but the right policy and
12	regulatory frameworks need to be put in place, and we
13	see, you know, we're actively working on that.
14	CHAIRPERSON CONSTANTINIDES: Alright, as
15	far as the projects that we did see that were put
16	out, how did we come to finance those buildings? How
17	did we come to choose the installers? How did-what-
18	what was sort of the process we used to sort of get
19	those buildings done?
20	DEPUTY COMMISSIONER FIORE: I'll let Ms.
21	Zielinski that that.
22	CHAIRPERSON CONSTANTINIDES: Alright.
23	ELLEN ZIELINSKI: [coughing] Hello,
24	there. So my understanding is that those projects
25	were financed a few years ago through an SEP grant,

1	COMMITTEE ON ENVIRONMENTAL PROTECTION 44
2	and other funding that we had available and we did
3	work with the Fire Department because they did have
4	an interest in being early innovators and testing
5	that tech-that technology. So they have shown
6	interest, and I think they've been continuing to
7	investigate to see how to make the economics of those
8	types of installations work. One other quick point
9	that I wanted to make in regards to your comment
10	about other innovative technologies because the
11	common theme that we've heard is the roof space is a
12	limiting factor. So I also wanted to mention that.
13	We are looking at technologies, solar and renewable
14	technologies that don't necessarily need a roof
15	space. So, some of the innovative technologies we're
16	looking into include building integrative solar. So
17	it's actually on the façade of the building.
18	CHAIRPERSON CONSTANTINIDES: Uh-huh.
19	ELLEN ZIELINSKI: Then also there is some
20	really interesting lightweight architectural solar.
21	It's actually a solar fabric and it's actually being
22	designed and manufactured at the Brooklyn Navy Yard,
23	and we found out about a really interesting
24	technology. So we are actively advancing some
25	demonstration projects because we think it could help
	l

1	COMMITTEE ON ENVIRONMENTAL PROTECTION 45
2	deal with some of the constraints that we have, and
3	we're trying to see the problems that we have and
4	think a little more creatively. So as those
5	demonstrations advance, we'd be happy to share the
6	results. They will be some of our first projects.
7	CHAIRPERSON CONSTANTINIDES: Yeah, I
8	would love to see that. I mean I think-as-as-as I
9	said earlier, I think we really want to continue to
10	innovate. I know we have done that, and-and continue
11	to do that together. So I think-I'm very excited
12	about hearing the other take on it. (sic)
13	ELLEN ZIELINSKI: We're trying to think
14	beyond the rooftop, as we like say.
15	CHAIRPERSON CONSTANTINIDES: Hey, you
16	know, I [laughs] think outside the box, think outside
17	the rooftops. It sounds scary I mean especially when
18	we realized that rooftop space is limited. So, you
19	know, that's been a-a common theme today whether it's
20	for PV or for solar thermal, and there's certain
21	rules that we have in place that we need to maintain
22	when it comes to rooftop space. Just looking at the-
23	I see basically the most expensive part about the
24	solar thermal is the installation or is it-is it the
25	maintenance over time or what-you know-you know,
l	

1	COMMITTEE ON ENVIRONMENTAL PROTECTION 46
2	what-what-what is-just walk me through where you feel
3	we're spending the most money in the future.
4	DEPUTY COMMISSIONER FIORE: So, yeah,
5	right. It's both of those right? So, the-the upfront
6	costs for-for the equipment installation is still
7	much higher than for the solar PV systems. The cost
8	for the solar PV systems have come down incredibly
9	and continue to decrease, and the maintenance costs
10	when you-we have some data that indicates when couple
11	the capital costs and-and maintenance costs for solar
12	thermal it can be up to four times the cost of a
13	solar PV system.
14	DEPUTY COMMISSIONER FIORE: Because I'm
15	just looking at some of the-the slides that previous
16	panel had and they talked about, you have a $5-1/2$
17	year paybacks, 4-1/2 year paybacks, 6-1/2-you know,
18	6-year paybacks would seem pretty close to where we
19	want to get, right so
20	ELLEN ZIELINSKI: I could just chime in
21	quickly, too, to say that a key factor here is—is
22	finding the right site.
23	CHAIRPERSON CONSTANTINIDES: Right.
24	ELLEN ZIELINSKI: And so if you could
25	match those necessary water characteristics the
ļ	

1	COMMITTEE ON ENVIRONMENTAL PROTECTION 47
2	residential buildings were a great fit for the
3	technology. You know, that's kind of the key. Like
4	how do we get the economics is making sure that we're
5	selecting the right building, and just for example
6	schools are a full quarter of our whole portfolio.
7	So we do have some limitations in finding that right
8	fit. But it doesn't mean that we've ruled-ruled it
9	out. It's just making sure that we're smart in how
10	we determine the technology.
11	CHAIRPERSON CONSTANTINIDES: Alright, so
12	it's really again just, you know, drilling down and-
13	and finding a better way to partner on it, right?
14	That's rally what we need to do is looking at the
15	portfolio and finding where we can do it, and doing
16	it where it makes sense. I'm happy to continue those
17	conversations with-with both-with all of you, and
18	with the installers to see how we can get that done.
19	Just my colleagues over to Donovan and any questions?
20	Alright. So, again, I-I am definitely looking forward
21	to working with you. I-I do believe that solar
22	thermal does have place, and as you have said, and
23	we're going to continue to explore that option and as
24	we move forward to meeting our 80 x 50 mandate, as we

25 are seeing Washington stepping away from the plate, I

1	COMMITTEE ON ENVIRONMENTAL PROTECTION 48
2	know that we're stepping up to the plate and that
3	we're going to be taking some serious swings to get
4	us where we have to go to combat climate change. So
5	I appreciate your partnership and looking forward to
6	working with you on also-oh, very quickly, very
7	quickly, I think since I have you here. I-I was
8	about to close, but since I have-how are doing with
9	the FDNY? I know that they've been trying to go
10	electronic with the submissions for variances on-for
11	solar. So how-how are we doing on that? Any new
12	information? [background comments, pause]
13	DEPUTY COMMISSIONER FIORE: No, I-I'm
14	sorry. We-we don't have any new information on that
15	at this time.
16	CHAIRPERSON CONSTANTINIDES: Alright,
17	well, I'll check up with you again. Since I figured
18	it's a solar haring, I—I just—it just—as we have many
19	solar installers here I know that's something that
20	they care about deeply, and seeing how we can speed
21	along that process so-
22	DEPUTY COMMISSIONER FIORE: Well, we'll
23	look into that for you and get back to you.
24	CHAIRPERSON CONSTANTINIDES: I definitely
25	appreciate that definitely, and thank you all for
Į	

1 COMMITTEE ON ENVIRONMENTAL PROTECTION 49 2 your testimony. I'm look forward to partnering with 3 you. 4 DEPUTY COMMISSIONER FIORE: Thank you. 5 CHAIRPERSON CONSTANTINIDES: Alright. [coughs] Alright, so we have-next up we'll have 6 7 Douglas Falconberg from Fly Beach Start, LLC. [background comments] Jessica Baldwin from Solar 8 9 Plumbing Design and Gaylord Olson. Will you all please step forward and be sworn? [background 10 11 comments, pause] 12 SAMARA SWANSTON? He has a Power Point he 13 wants to present. 14 SERGEANT-AT-ARMS: [off mic] 15 SAMARA SWANSTON: The professor. On the left hand side Gaylord Olson. 16 17 SERGEANT-AT-ARMS: [off mic] 18 SAMARA SWANSTON: Can you please raise 19 your right hands. Do you swear or affirm to tell the 20 truth, the whole truth and nothing but the truth 21 today? 2.2 PANEL MEMBER: I do. [pause] 23 CHAIRPERSON CONSTANTINIDES: Are you ready, Professor Olson? You want to begin. Well, 24 actually let's do you last since you have the Power 25

1 COMMITTEE ON ENVIRONMENTAL PROTECTION 50 2 Point presentation. Alright, so start here and then 3 we'll-we'll finish up with you with Power Point. 4 PROFESSOR GAYLORD OLSON: Okay, great. 5 JESSICA BALDWIN: [off mic] Hi, I own a business [on mic, pause]-that are funded by--6 7 SERGEANT-AT-ARMS: You Have to start all 8 over. 9 JESSICA BALDWIN: [on mic] Okay, sure. I own a-I own a business called Solar Plumbing Design. 10 We install the 80% solar thermal and 20% 11 12 photovoltaics. We've had an increase in employment 13 over the past couple of years. We mainly do a lot of 14 multi-family installations funded by the present HPD, 15 and we've also done work for the New York Power 16 Authority who have seen some of the sites I've been 17 referred to. I'd like to testify to the mechanical 18 durability of the systems based on live monitoring 19 I'd like to testify on the benefit to small data. 20 businesses in New York but I'd like to talk about 21 electrification. In this space I have a lot of field experience with all of these things. I think the 2.2 23 biggest issue is really the-the mechanical-the mechanical feasibility that we've been running into 24 as the gentleman who was speaking and was pointing 25

1	COMMITTEE ON ENVIRONMENTAL PROTECTION 51
2	out about the deficiencies with Fire Department
3	systems. I would like to bring to the table the
4	comparison between a boiler and the solar thermal
5	system noting that all of the mechanical requirements
6	and the maintenance requirements are the same solar
7	thermal since it has an exterior component, has a
8	little bit more added to it, but in every way that a
9	photovoltaic system has an exterior component, that's
10	not a huge consideration. The boiler might cost-cost
11	about the same amount per therm or BUT or solar BTU
12	produced as installing a solar thermal system, your
13	boiler, you're paying-I-I-I spent five therms worth
14	of gas today. That would be say to heat a 10-family
15	building, or you can say oh, look, I made three
16	therms today for the same price I put down to spend
17	five therms a day. As far as okay, let's look at the
18	real issue feasibility of installing solar panel
19	systems on publicly owned buildings. As far as the
20	roof space goes, solar thermal occupies one-quarter
21	of the physical space that photovoltaics has to
22	occupy to produce the same equivalent energy, and in
23	relation to electrification, that's an argument for
24	solar thermal because to offset electric hot water,
25	to do it with photovoltaics or any other electrical
l	

1	COMMITTEE ON ENVIRONMENTAL PROTECTION 52
2	on-site generation technique would be-wouldn't be
3	possible given the roof spaces that are there. With
4	solar thermal it's possible. As far as integrated
5	solar, solar thermal makes a lot more sense than
6	photovoltaics because its angle losses are a lot less
7	especially with evacuated tubes. If you're doing
8	building integrated solar on an electrified building
9	you choose solar thermal. So, this guy is putting up
10	the argument for solar thermal not against it when he
11	talks when he talks about electrification. There are
12	a lot of failures. I mean I totally admit to that.
13	I repair a lot of systems. I'm just going to say
14	that. A lot of it is due to a lack of oversight.
15	Like in any other failure in any other department
16	there needs to be some kind of oversight. Okay, let's
17	go back to the boiler thing. If your boiler fails,
18	you know it because you don't have hot water, but the
19	boiler is backing up the solar thermal. If the solar
20	thermal fails, the tenants or the end user is never
21	going to feel it. There has to be some kind of
22	monitoring because when a system goes down it can
23	degrade faster just like a—a PV system would or any
24	other system. There has to be-there has to be
25	oversight. I recently repaired a very large Ritter,
ļ	

1	COMMITTEE ON ENVIRONMENTAL PROTECTION 53
2	actually installation. It's seeing our clients so
3	that's a state facility, but using the same
4	technology that was implemented at the Fire
5	Department. The-the system is amazing producer of
6	energy. It's for a dormitory. There's a huge hot
7	water demand. The reason the systems were failed
8	when I got there was because of the lack of
9	maintenance by the facility there. They had-they had
10	let the system be shut down for too long in the
11	winter so there were burst pipes and that's what I
12	went there to fix. But that's so simple to avoid. I
13	have an online monitor that gives me alerts in any of
14	my systems. I have even one parameter that's off,
15	and my guarantee as an installer is that I'm going to
16	fix that right away within the time period that's in
17	my contract. So that I don't have failure. There-
18	there are-there are simple easy ways for like in a
19	city contract to address any risk of failure. It's
20	really not our responsibility on both ends, and other
21	than that, solar thermal is the way to go. I mean
22	you use less building space. You have a lot more
23	options on how you come down to it, which that
24	interferes with Fire Department requirements less.
25	There are-I also want to just point out the kind of
Į	

1	COMMITTEE ON ENVIRONMENTAL PROTECTION 54
2	obvious fact that there are several large management
3	companies that use solar thermal repeatedly. They
4	love solar thermal. This is like I said this is a
5	30-year-old system. I don't have it hooked up to the
6	projector, but it's right here, and today so far it's
7	made 16,000 total BTUs and it's 32 years old and it's
8	medium sized. So as far as durability and mechanical
9	integrity this system has been down for one year
10	before I came, and started it up again. But this
11	owner is currently installing a new solar thermal
12	system for them. They have several others. There
13	are several property managers in New York City who
14	could be here testifying to the integrity of the
15	systems. So thank you very much and thank you so
16	much to the Mayor and the Council for taking bold
17	moves to-to help move quickly towards the vey
18	important goal of environmental protection. I
19	appreciate it.
20	CHAIRPERSON CONSTANTINIDES: Thank you.
21	Thank you for your testimony. Please stay on the
22	panel because I'm going to ask question after
23	everyone goes so
24	DOUG FALCONBERG: Okay, my name is Doug
25	Falconberg, and I'm the President of VLIB (sic)
I	

1	COMMITTEE ON ENVIRONMENTAL PROTECTION 55
2	Solar. We do development projects for solar hot
3	water and, you know, as—as I sit here and listen, I'm
4	always amazed by the misconceptions about solar hot
5	water, and how it works, and what the-you know, what
6	the issues are. The reason I went into business in
7	New York City aside from the fact I've lived here my
8	whole life, is because this city is uniquely
9	positioned for solar hot water. If you look at other
10	major cities around the world whether it's Shanghai
11	or Tel Aviv or Beijing, nearly every building will
12	have solar hot water. When you have tall buildings
13	that use hot water, solar hot water it makes sense.
14	Not on Walmart. Walmart you put PV, but in New York
15	City there's a lot of buildings that are tall and a
16	lot of them use hot water, nursing homes for example,
17	hospitals, senior residences, laundromats, apartment
18	buildings. It's-it's a long list. Why don't you put
19	PV on these buildings? Because is PV is much less
20	efficient. We've heard testimony here five times
21	less efficient, and that would a typical number.
22	Also, the solar hot water offsets the carbon dioxide
23	and the stuff produced at the point where it's
24	installed not in Upstate New York or Canada where the
25	electricity is produced, but here at home. This is
I	

1	COMMITTEE ON ENVIRONMENTAL PROTECTION 56
2	important. One of the misconceptions is that it's-
3	it's a year-round technology. Well, it is. In our
4	systems I see 140 degree water coming out of the
5	system on cloudy days in the middle of the winter.
6	In the summer it produces a lot more heat, but also
7	in the summer if you come up to my neighborhood in
8	the Bronx or in Inwood or Washington Heights where I
9	work, you also see in the summer black soot coming
10	out of the smoke stacks. It's like thick black
11	clouds of soot coming out because they're firing up
12	the boiler to make hot water. Okay, with the City
13	I'm aware has the No. 6 oil and they should have to-
14	we wean off No. 6, and they should be part of that
15	solution as well. The payback you've discussed and
16	the numbers that I-that I heard discussed for payback
17	roughly jive with ours. If you have a natural gas
18	system with no incentives because it's not for profit
19	you're going to see payback numbers in the order of
20	13 years. It would be a natural gas where the user
21	has a tax appetite for the 30%. You'll see payback
22	numbers on the order of six, seven, eight years. For
23	oil the payback is much higher. For oil you'll a-a
24	payback of five or six years because oil is more
25	expensive than natural gas. Not every area is
I	

1	COMMITTEE ON ENVIRONMENTAL PROTECTION 57
2	appropriate for natural gas. We see this all the
3	time. Con-Ed wants \$2 million to connect us to the-
4	to the main in the middle of the street. So natural
5	gas even in New York City is not universally
6	available at the levels needed to heat a boiler, and
7	at that point it's oil or solar hot water. So, you
8	know, that's where we come in. What I haven't heard
9	anyone here discuss today are synergies. The biggest
10	problem I face trying to sell solar hot water is
11	people don't know what it is, and they can't see it.
12	Okay. If they've never seen it, they don't believe
13	it will work. I've had laundromat owners in the
14	Bronx say, you know, show me a laun-laundromat that's
15	using this, and I'd say well I can take you to one in
16	Queens, and they'd say well, I don't want to-to see
17	it in Queens. I wanted to see one in the Bronx.
18	Because apparently in the eyes of that person, the
19	laws of physics that apply in Queens do not apply in
20	the Bronx. So having just the ability to point
21	there's one and there's one and there's one, will
22	dramatically improve the adoption of those
23	technologies throughout the city, [bell] and I think
24	those synergies are very important. Just because to
25	address the maintenance issue. If-if you have a

1	COMMITTEE ON ENVIRONMENTAL PROTECTION 58
2	building engineer, which you need to maintain your
3	boiler that same engineer can maintain a solar
4	plumbing system. If the monitoring system says this
5	pump has failed, you can contact the-the building
6	management and say have your building engineer, your
7	maintenance guy replace the taco pump in the
8	basement, and you tell him which one had failed. He
9	flanges come off, they cut it out, the flanges come
10	off, the new one comes in and they're back up and
11	running. I don't really-Jessica is also correct. A
12	lot of these systems in the past were very, very
13	poorly designed. We see it as well that-that this
14	wasn't done or it wasn't sized correctly or some
15	other things were not done that should have been
16	done, but I think with the technology today being
17	improved, I think a lot of those design issues don't
18	exist today because we know how to build and we have
19	the certification standards now, and so on. So
20	that's about all I have to say at this time. Thank
21	you.
22	CHAIRPERSON CONSTANTINIDES: Thank you,
23	Mr. Falkenberg. Professor Olson. [pause]
24	PROFESSOR GAYLORD OLSON: Well, thank you
25	very much for inviting me to testify. My name is
I	

1	COMMITTEE ON ENVIRONMENTAL PROTECTION 59
2	Gaylord Olson. [coughs] I-I live in Princeton, New
3	Jersey, but I get to New York quite often, and I'm on
4	the Industrial Advisory Committee for Mechanical
5	Engineering at Temple University in Philadelphia. And
6	on the screen there is a presentation that was done
7	in San Francisco last summer, but it relates to this
8	topic, but I'd like to expand your thinking in the
9	direction of seasonal storage. [coughs] Now that
10	might not be happening on Manhattan Island, but is it
11	correct for me to understand that [coughs] the
12	College of—or part of the New York City ownership
13	extends to Queens College and Brooklyn College and
14	Manhattan Island College?
15	CHAIRPERSON CONSTANTINIDES: Uh-huh.
16	PROFESSOR GAYLORD OLSON: Oh, great.
17	Okay, well [coughs] that—those are places that have
18	quite a bit of large buildings and open spaces. For
19	example soccer fields. Now, when I say seasonal
20	storage what I mean is putting a—a horizontal array
21	of pipes underground perhaps under a sports field or
22	it could be under parking lot. Now that introduces a
23	much better advantage for solar thermal collection
24	because you get most of the solar thermal energy in
25	June, July and August. If you're to use it for space

1	COMMITTEE ON ENVIRONMENTAL PROTECTION 60
2	heating, you're going to need it in December and
3	January and maybe even part of February [laughs]
4	although it's kind of warm today, but we think that
5	it is going to be cost-effective to do that. Now, the
6	part of the world where this has been done with great
7	success on a large scale is Denmark. If you talk
8	about solar technology in Denmark, you will have
9	people tell you that is not solar electricity. They
10	have large arrays of solar thermal collectors. They
11	are storing that heat from summer into winter, and
12	they're using it for a large portion of space heating
13	in homes, in—in towns and villages in Denmark. So,
14	I'll-I'll just try to quickly go through some of the
15	slides here, and there are links to it and, of
16	course, I could send this to anybody who's
17	interested, but, one—one more thing. Do you all have
18	a copy of my five-page handout? Could I steer you to
19	the top of page 2. I have something there that has
20	not been brought home yet today at this testimony,
21	but I'd like to make sure it's brought home. And
22	that is when you talk about solar photovoltaic
23	electricity, there's a tremendous economy of scale.
24	If you can get that electricity from a very large
25	array on a big open field, rather than any rooftop.

1	COMMITTEE ON ENVIRONMENTAL PROTECTION 61
2	And so, I think we're going to see this happening
3	more and more because the electricity-well, but
4	that's the number one point that I put there. The
5	economy of scale. It's about a factor of two. In
6	other words, you could buy twice as much electricity
7	if it comes from a very large array on a big open
8	field as you can form a rooftop. Point number two,
9	the solar-this has been brought out already here.
10	I'll just mention it quickly. You can easily
11	transfer [coughs] that electricity over the power
12	grid many hundreds of miles without any significant
13	loss. Well, there would be some loss, but not much.
14	You cannot do that with solar thermal. Point number
15	three, which was brought out before also and I
16	certainly concur, there is about a factor of four or
17	five benefit and efficiency and conversion of
18	sunlight into energy with solar thermal as compared
19	to the currently used solar photovoltaic panels. So
20	I'd like you all to think about those three points
21	before you make any very-very much [coughs] of a
22	decision into large dollar investments because I
23	think these are important things to-to take into
24	account. So, with that, I'll go through the-some of
25	the slides here. I'm going to skip down quickly

1	COMMITTEE ON ENVIRONMENTAL PROTECTION 62
2	through these, but to open the door to something else
3	which has not been brought out. Heat pumps and
4	underground storage or underground heat exchange
5	represent a very syner-synergistic set of technology
6	elements. This has a very simple solar collection
7	[coughs] method unglazed there, and I'm going to try
8	to go quickly through these. With a heat pump you
9	want to have a temperature that's compatible with the
10	temperature you're trying to get inside your
11	building. So if you can start with warm water, a
12	heat pump will be very efficient. That's basically
13	what that shows. This shows some of the dollar
14	[coughs] benefits for-for doing this as the hybrid
15	approach, solar thermal collection along with a heat
16	pump, a water source heat pump. This is almost the
17	same thing. Here is another type of solar thermal
18	collector. This would be the evacuated tube type
19	that Mike-Michael DiPaolo [coughs] was discussing and
20	he represents a very predominant company. Here's
21	something that could combine the three technologies
22	solar thermal in the middle, a ground heat exchanger
23	at the bottom and a water source heat pump at the
24	top. If you have water valves that are computer
25	controlled in that system you can now open-now have

1	COMMITTEE ON ENVIRONMENTAL PROTECTION 63
2	this system provide heat essentially all year long.
3	In other words, the ground can be a seasonal storage
4	this facility for you. So in the summer you can
5	condition that ground with the solar thermal
6	collection to make the ground heat exchanger very
7	warm. In the winter that heat pump will operate much
8	more efficiently because it can get hot water from
9	underground even if the sun is not shining in
10	December. I hope that makes sense. At any rate
11	this-this could be a big advantage in the solar
12	thermal direction basically and I have about nine
13	different modes of operation here depending on which
14	of those valves are open, and which are closed. This
15	has a-an extra ground heat exchanger. So in this
16	configuration, if you wanted to you could make one
17	region underground hot all year long, make the other
18	region underground cold all year long. And again,
19	you have a solar thermal collector at the second
20	block from the top. This is something more recently
21	but it-it avoids much of the valves, but it uses
22	multiple-variable speed pumps, and here again, we're-
23	we're-we're showing a solar thermal collector in the
24	middle and at the top one or more water source heat
25	pumps. The dry cooler there is-it has a liquid heat
ļ	

1 COMMITTEE ON ENVIRONMENTAL PROTECTION 64 2 exchanger. Hope there are some engineers in the 3 group to pick this-pick this up here. The horizontal 4 ground loop has a valve associated with it so that you can reverse the flow direction in the ground 5 loop. So the idea is with a large horizontal array 6 7 of pipes in the ground below an insulator that's the 8 seasonal storage configuration. The ideal thing is 9 to have a connection at the center, and a connection at the perimeter. So when during the summertime you 10 11 want to put hot water into the center point of the 12 underground storage region. In the winter when you 13 want to bring that heat back again, you bring the 14 heat out from the center. So you need to have the reversal of flow direction. The valve at the bottom 15 right D2 would be open for flow when you want to 16 17 configure or when you want to precondition the ground 18 temperature either hot or cold. In the case of the 19 solar thermal collection you would have water 20 circulating counter clockwise so the hot water comes out the left side of the solar thermal block and it 21 2.2 goes down. It goes into the ground, and circulates 23 around. So you're continually heating up the ground all summer long, and then it'll-as long as it's big 24 25 enough, it'll still be hot in December. But you-you

1	COMMITTEE ON ENVIRONMENTAL PROTECTION 65
2	probably would not do this on Manhattan Island
3	because there is not a big enough area to do it, but
4	you could do it at any of the colleges that I
5	mentioned. So, this is kind of a side-simplified
6	side view, and what this shows additionally is if you
7	have a source of both hot water and cold water, you
8	can generate electricity from-from that. Now, it may
9	not be very high powered-high-high energy or high
10	powered electricity for a long time, but it-it
11	probably would be useful for an emergency situation.
12	I'm going to skip through some of these because you
13	can't read them very well, but okay. So underground
14	there could be a spiral array of pipe such as
15	sketched out here. It could also be put in a
16	rectangular form to match the dimensions of the
17	building. But this would be for new construction
18	rather than an existing building. So I hope we have
19	the door open here to any new buildings that the City
20	might be constructing. So this would be a way to
21	plan in advance for better use of solar thermal.
22	Now, you have to have this underground region large
23	enough to be capable of seasonal storage. When I say
24	seasonal I mean for a storage for about six months
25	from July into January basically. So what we're
ļ	

1	COMMITTEE ON ENVIRONMENTAL PROTECTION 66
2	showing here is if we heat up a hemispheric or region
3	of ground we're-we're asking how large does it have
4	to be to really store efficiently on a seasonal
5	basis, and we see the two extremes here on this graph
6	if it's too small like four or five meters radius,
7	you're going to lose 80% of heat over six months. So
8	it has to be up in the ballpark of 15 meters radius
9	so that you're able to store 80% of the hear over the
10	six-month-when I say six month, I mean the heating
11	time and the cooling time there on the-on the bottom
12	right. For this the size matters when you want to do
13	a seasonal storage of thermal energy underground.
14	Now, there's a cost advantage compared to standard
15	underground heat exchangers. The standard approach
16	is on the far left here, which would be bore holes
17	typically used with ground source heat pumps. An
18	alternative is the horizontal array of pipes on the
19	right here, and this is being done in the state of
20	Maine for heat exchange not specifically heat
21	storage. But there's a tremendous cost advantage
22	compared to bore holes of doing this, and it's about
23	a factor of two to three, and that shows up here. If
24	you want to-if you compare the top line on this
25	little spreadsheet, it gives you the cost per ton of-

1	COMMITTEE ON ENVIRONMENTAL PROTECTION 67
2	of heating or cooling and it's \$3,400. If you look
3	at the horizontal grid second from the bottom, it's
4	\$1,100. That's a factor of three. Now there's one
5	company that's doing the seasonal storage and they've
6	done it for a long time, and it's in London, England,
7	and anybody who wants can check their website out.
8	You'll see the examples. They also store cold
9	underground. Here's a picture of the storage array
10	being put in the ground, which would be below a
11	building. It can be below a highway or a parking
12	lot. They've done this actually below a highway in
13	England, and—and that works. [pause] One of the
14	very successful seasonal storage and thermal
15	collection systems in North America is this right
16	here, which happens to be near Calgary in Alberta,
17	Canada. So they have flat plate solar thermal
18	collectors on all of the garage roofs for 52 free-
19	standing homes, and they are putting hot water all
20	summer long into this case they are using bore holes,
21	144 of them at the top right. It's been operating
22	for about eight years, and it gives essentially 100%
23	of their space heating for all of the homes. I'd
24	recommend you check the website out. It turned out
25	to be more expensive than is cost-effective but it-it
l	

1	COMMITTEE ON ENVIRONMENTAL PROTECTION 68
2	works quite well. Here are some of the dollar
3	amounts for that particular project. If you want to
4	talk about seasonal storage and different methods
5	this graph shows I think four different methods:
6	Tank, pit, bore holes and aquifer. What we are
7	proposing is yet another method, which would someday
8	be—be on this graph and that is the horizontal pipe
9	array buried in the ground below an insulator. But
10	as you can-well, I won't dwell on this. It's little
11	bit too much detail. When you-when you want to talk
12	about solar thermal collectors, here is an-and
13	important graph that shows the efficiency of the
14	three major types of collectors that we could
15	consider for New York City use, in my opinion. The
16	evacuated tube type works at-at highest efficiency
17	off to the right when you have a high temperature
18	that you want to get to. You'll notice that the-the
19	efficiency on the left goes up as high as 80 to 85%.
20	Now, this graph does not show what happens when you
21	get to the left of the zero point, but there is
22	something interesting in that direction also. Oh,
23	this-this is too small to read. Sorry about that.
24	[background comments] Okay, this is in my handout.
25	What this shows is that [coughs] if you have a solar
I	

1	COMMITTEE ON ENVIRONMENTAL PROTECTION 69
2	thermal collector where the water in the collector is
3	colder than the atmosphere, you can get a-an apparent
4	efficiency, which is greater than 100%. Now, the
5	reason that happens is because you're collecting
6	thermal energy from the sun but that same collector
7	can collect some thermal energy from a warm breeze
8	that blows across. It's convection transfer. It's
9	also radiation transfer. So, I'm going to kind of
10	skip quickly through these so we have time for-for
11	questions and In terms of temperature that these
12	panels can get to this shows a temperature that is
13	currently being shown on a website at the upper left
14	of up to 200 degrees centigrade. So very hot. Okay,
15	the-the last two slides I want to emphasize this one
16	and the following one. This one opens the door to
17	any and all buildings in New York City that have
18	windows because this is a research project going on
19	right now in-in Europe with-with multiple countries,
20	and they're intending to have the windows become
21	solar thermal collectors. [bell] There will be water
22	flowing through a hollow space in the windows, and so
23	in any and all skyscrapers in New York someday could
24	have solar thermal collection from that method. The
25	final slide here is something that a few of us are
l	I

1 COMMITTEE ON ENVIRONMENTAL PROTECTION 70 working on to have a solar thermal collector, which 2 3 collects heat as a flat plate collector type, but 4 also will collect cold from water flow through a top hollow surface. So, thanks for your attention. 5 That's all I have right now. 6 7 CHAIRPERSON CONSTANTINIDES: Thank you,

Professor Olson. I appreciate that. Thank you for 8 9 your-your thorough Power Point presentation. I appreciate your testimony. So I'm-I'm going to ask a 10 11 few questions, and-and the City, you know, the City 12 agencies like DCAS and-and-and also maybe claim that between maintenance and installation that solar 13 14 thermal is four times more expensive that 15 photovoltaic, but are we making the wrong comparison? 16 Should we be making the comparison to a boiler 17 system, and replacing a boiler and the-the greenhouse 18 effects that they-that that has, and-and sort of 19 making that comparison instead. I mean that sort of 20 popped out when you had sort of discussed your 21 testimony early, Ms. Baldwin.

JESSICA BALDWIN: I'd-I'd love to answer
the question.

CHAIRPERSON CONSTANTINIDES: Go ahead.

25

1 COMMITTEE ON ENVIRONMENTAL PROTECTION 71 2 JESSICA BALDWIN: First of all, as far as 3 your number the cost is two times as much. Solar 4 thermal systems --5 CHAIRPERSON CONSTANTINIDES: I heard a number but [laughs] but summers days, that's a 6 7 possibility. 8 JESSICA BALDWIN: [interposing] I'm 9 sorry. Were you finished with your question for the --CHAIRPERSON CONSTANTINIDES: 10 11 [interposing] No, that earlier that-earlier DCAS and 12 then the Mayor's Office of Sustainability had said 13 that the-that they had quoted that it was four times 14 more expensive between installation and maintenance 15 to install a solar thermal system rather than a solar 16 PV. And I'm posing the question one, is that 17 accurate and second, are we making the wrong 18 comparison when we should be making the comparison as 19 you talked about to a traditional boiler system, and 20 how that breaks down and how-how we're paying for 21 those particular boiler systems to be maintained. 2.2 JESSICA BALDWIN: Well, I can-I can go on 23 that-the first statement about the cost comparison was not a question but a statement. 24 25 CHAIRPERSON CONSTANTINIDES: Right.

1	COMMITTEE ON ENVIRONMENTAL PROTECTION 72
2	JESSICA BALDWIN: I can—I can just follow
3	through with that. It is a little more expensive the
4	initial installation like per square foot. Per energy
5	produced solar thermal would be cheaper. I bid on
6	both jobs, and I think some of us do so we know what
7	the comparison is.
8	CHAIRPERSON CONSTANTINIDES: Uh-huh.
9	JESSICA BALDWIN: But in-in terms of not
10	comparing solar thermal to PV and comparing it more
11	to like a building mechanical system
12	CHAIRPERSON CONSTANTINIDES:
13	[interposing] Uh-huh.
14	JESSICA BALDWIN:that would be a much
15	more wise approach. I would absolutely encourage
16	anyone to change their perspective on that.
17	CHAIRPERSON CONSTANTINIDES: And I-many
18	of us-many of our buildings that, you know, we use
19	the traditional boilers. There are boilers that break
20	down to be replaced and they aren't hearing the
21	larger problem.
22	JESSICA BALDWIN: [interposing] Yeah,
23	right. In terms-in terms of maintenance and costs
24	that's a better apples to apples comparison.
25	
1 COMMITTEE ON ENVIRONMENTAL PROTECTION 73 2 CHAIRPERSON CONSTANTINIDES: And going to 3 a solar thermal system is not only going to be cost 4 competitive when we make that same comparison but also we're going to be reducing greenhouse gas 5 emissions. 6 7 JESSICA BALDWIN: Yeah. 8 CHAIRPERSON CONSTANTINIDES: And I see 9 you want to jump in there. I saw waiting. (sic) DOUG FALCONBERG: Yeah, I-I think the 10 11 devil is in the details of the design and as an engineer I'm very focused on design issues, but I 12 think it's-it's like-like everything else. 13 If you 14 compare that you go to the Mercedes which is going to 15 be more reliable, but in terms of the design, we 16 focus on designs that require less maintenance. We 17 don't use Glycol because Glycol is a source of 18 failure. It corrodes the pipes, it overheats. We 19 use a drain back systems so when the system is not in 20 use the water drains out to avoid freezing issues and 21 overheating issues. I think it's the quality of the 2.2 insulation. We've been called upon to replace the 23 insulation on rooftops, but all the insulation burned off because guess what, they didn't use high 24 temperature insulation, they used standard foam 25

1	COMMITTEE ON ENVIRONMENTAL PROTECTION 74
2	insulation, which simply melted and burned when the
3	pipes got hot. The weather proofing a roof with the
4	pipes. You know, you-you put on sheathing, the pipes
5	don't corrode. You don't put on sheathing, they do.
6	It's-it's a thousand little design details that again
7	will add up to a system that's either maintenance
8	prone or extremely reliable. You know, putting the
9	strainers before the pumps so the-the pumps don't sit
10	and try and pump grit and-and grime through their-
11	through their wheels, but—but are pumping clean
12	water. That will all will extend the life of the
13	pumps, and on and on and on. There's like a zillion
14	details, but I will say that if the system is
15	properly designed as-as I think Quixonic stated
16	they'll go for 25 or 30 years. I also want to
17	correct another misstatement where somebody said that
18	if a single tube breaks or-or fails, you have to shut
19	down the system with evacuated tube systems, which is
20	are more-are more expensive, but they produce more
21	heat in the wintertime. With those you don't have to
22	shut down the system. You simply unscrew the glass
23	shield. You put on another one and you're-you're back
24	in business. So there's a million little design
25	issues that—that have to be addressed like any other
Į	

1 COMMITTEE ON ENVIRONMENTAL PROTECTION 75 2 system and if you address properly and the engineer 3 does-does their job, you're going to come out with a 4 very reliable and satisfactory system.

5 CHAIRPERSON CONSTANTINIDES: So then looking at-and we've talked a little about payback 6 7 and building on payback. They said that the systems 8 that were installed FDNY were payback-they're payback 9 just wasn't worth it because of the lack of usage of water, and then secondly that the system was 10 11 unreliable. So you-you'd make the case that really 12 is about the design itself, and-and then sort of 13 looking at paybacks that, you know, you'd talked about nursing homes, senior residences, residential 14 15 buildings, hospitals, prisons, places where there's 16 consistent hot water usage as-as better for solar thermal on the one floor? 17

DOUG FALCONBERG: Well, we do-we tend-we 18 19 We don't do a single-family do commercial. 20 residential. We multi-family residential and most of the installations we do there's an onsite building 21 2.2 manager whether you call him a super or a building 23 engineer, but there's someone in terms of-of available to either monitor the system or contact if-24 if weren't monitoring their system. So, you know, 25

1	COMMITTEE ON ENVIRONMENTAL PROTECTION 76
2	for-for that situation I-we-we saw the FDNY, and we
3	know that in terms of what they were doing, which is
4	basically washing dishes after the evening meal.
5	There-there was no way that those firehouses required
6	three or four panels. One panel is typically
7	sufficient for a family of four living in the same
8	unit. So from that standpoint in my opinion it was a
9	poorly—the design was poorly conceived from the very
10	beginning.
11	JESSICA BALDWIN: A system that's
12	oversized is more likely to fail than a system that's
13	undersized, which would actually operate more
14	efficiently. It's a-it's a shame what happened.
15	There needs to be more technical review and oversight
16	and monitoring is critical.
17	CHAIRPERSON CONSTANTINIDES: Right.
18	DOUG FALCONBERG: Yeah because without
19	monitoring the pumps will cascade and go into the
20	stagnation. If a pump fails, it goes into
21	stagnation, the water overheats, the Glycol breaks
22	down. Now it starts corroding the pipes. You get
23	pin holes, and all of a sudden you've got it with the
24	insulation off-installation-insulation off the roof,
25	and-and replace the pipes. So it's a combination of

1 COMMITTEE ON ENVIRONMENTAL PROTECTION 77 2 factors, but like any mechanical device or any system 3 in general, if it's done properly, a year maintenance 4 will be minimal. You have to change the oil in a car every 3,000 miles. 5 CHAIRPERSON CONSTANTINIDES: So it's 6 7 about main-it's about doing it smartly, doing the 8 design intelligently and-and finding the right 9 building so it's appropriate--DOUG FALCONBERG: Yes. 10 11 CHAIRPERSON CONSTANTINIDES: -- and sizing 12 the-sizing the system to the use. If we can do those 13 four things, then we're-we're doing-we're on the 14 right track. 15 DOUG FALCONBERG: I agree with that 16 statement, yes. 17 CHAIRPERSON CONSTANTINIDES: Alright, so 18 I-I can't take questions like one, two. [laughs] I'll 19 have to have you come back to the microphone to do 20 that. So I just want to thank you for your testimony 21 and I appreciate your giving us your expertise and 2.2 you-your time here. 23 PROFESSOR GAYLORD OLSON: Am I allowed to make one final comment? 24 25

1 COMMITTEE ON ENVIRONMENTAL PROTECTION

2 CHAIRPERSON CONSTANTINIDES: One final3 comment definitely.

PROFESSOR GAYLORD OLSON: Okay. Anyway on the screen I have showing there the cost to put in a 10,000 square meter, solar thermal array in Denmark, which is fairly current. So it ends up being about 240 euros per square meter.

9 CHAIRPERSON CONSTANTINIDES: Good. Thank 10 you Dr. Olson. I appreciate your time and—and all of 11 your—your expertise and testimony. Thank you. 12 [background comments] Alright, it will be next up 13 please step forward Robert Kramer (sic), Alexander 14 Weiss and Kartek Abernath (sic). [background 15 comments, pause]

SAMARA SWANSTON: Excuse. Gentlemen,could you pleas raise your right hands.

18 CHAIRPERSON CONSTANTINIDES: Is Kramer 19 here? Okay, thank you.

20 ROBERT KRAMER: Later I want to talk 21 about--

22 SAMARA SWANSTON: [interposing] Can you 23 please raise your right hand? Do you swear or affirm 24 to tell the truth, the whole truth and nothing but 25 the truth today?

1 COMMITTEE ON ENVIRONMENTAL PROTECTION 79 2 ROBERT KRAMER: I do. I affirm. Okav. 3 I want to thank the Council for having me speak. 4 SERGEANT-AT-ARMS: So make sure the red 5 light is on. (sic) ROBERT KRAMER: Oh, sorry. 6 7 CHAIRPERSON CONSTANTINIDES: Would you sit down and put on the mic. Oh, wonderful. 8 Thank 9 you. ROBERT KRAMER: I want to thank the 10 11 Council for letting me speak. I believe that we arewe're in North America and we only get-what is it 12 13 1,400? How many we get there. 14 ROBERT KRAMER: I'm-I'm showing 59 15 kilowatt hours. ROBERT KRAMER: Okay. Even in North 16 17 Africa, even they have solar there, they still have a 18 boiler because the sun doesn't shine everyday, and 19 they do want to make sure-if they want to have the 20 hot or heat, they have to use a boiler. I believe 21 that solar thermal is amazingly great, and I-I-I am 2.2 pretty sure it would be very applicable to some 23 buildings in New York City, but if you want to use it in commercial buildings it's quite difficult. They 24 are not using like some of my previous speakers they 25

1	COMMITTEE ON ENVIRONMENTAL PROTECTION 80
2	pointed out. Hot water is not really used that much
3	in those buildings, and many of these buildings are
4	converting even to electric hot water heaters because
5	there's not enough usage. On some larger buildings,
6	putting in so many solar panels it's very difficult
7	in New York, and because it's highly concentrated. I
8	believe that solar panels can be used in some
9	instances where the building or the area allows it,
10	and it can be instrumental. But most of the time in
11	New York City it's not so easy. We have existing
12	systems. Our buildings that we have in New York City
13	are builtmost of them are over 60 years old. They
14	are operating not on solar. They weren't built for
15	solar panels. They were built for steam and hot
16	water that's produced by boilers. If we would want
17	to even implement some of the solar panels, which I'm
18	not that familiar to do the whole city, you would not
19	be able to meet those goals. What I believe we have
20	to improve what we have to make the city work in
21	North America, to be able to use the existing
22	infrastructure that's already in those buildings.
23	And for example the City of Manhattan our Borough of
24	Manhattan has 106 miles of a heating system. The
25	heating system continuously puts out 10 million
l	

1	COMMITTEE ON ENVIRONMENTAL PROTECTION 81
2	pounds of steam every hour 24/7 all year round, and
3	it's not just steam, it's clean water, a very
4	valuable resource. That valuable resource is not
5	used completely. Seventy percent of some of it is
6	used, 32% immediately is dumped into the sewer as
7	condensation on 1,952 steam tracks in our system,
8	which pollute our-our sewer with-with thermal energy.
9	As you know, if you're in Manhattan you see steam
10	rising from all over the streets. Not only that,
11	this heat goes into steam, goes into the building,
12	but they reduce its pressure and the air-and they use
13	some of the heat and most of it is dumped into the
14	sewer, but not at the temperatures of about over 200
15	degrees. They have to add cold water from the tap
16	just to cool it down. When they're cooling it down,
17	they're adding more water to the sewer and they're
18	taxing our water resources. Yes, oil is expensive,
19	but water is something that we can't just get out of
20	the ground so easy. It's a very expensive item.
21	Maybe we take it too much for granted, and right now
22	we're not only throwing away water, we're throwing
23	away a lot of heat. The heat that's being thrown
24	away into the sewer system could heat the whole of
25	Manhattan. Give us hot water at least for everyone

1	COMMITTEE ON ENVIRONMENTAL PROTECTION 82
2	for free without putting any solar panels anywhere
3	and the infrastructure already exists. It's piping
4	its hot water. We have developed the special system,
5	a very simple system. It basically utilizes the
6	existing infrastructure that we have. We make-we
7	make sure we can make every boiler or Con Edison—any—
8	any system you have in your home except that forced
9	heat, which is something that's completely insane-
10	insane to be used for heating. To be able to
11	integrate. You can integrate the panels, you can
12	integrate your boiler. You can use your gas or
13	whatever it is and what it will basically do are
14	converting hot water-you're heating hot water as a
15	by-product in its conversion. We create electricity
16	with it. So any time you heat water, you can
17	electric as a by-product. That's something that can
18	be utilized almost in every building here in New York
19	and, of course, you can put all the panels you want
20	anywhere you want, but the panel is not going to
21	solve your problem. We're still in North America.
22	As I said, anywhere else it's not-it's not going to
23	work. Let's use what we have. For us to rebuild the
24	whole system of New York City all the piping all the
25	boilers, all the-all the infrastructure it's

1	COMMITTEE ON ENVIRONMENTAL PROTECTION 83
2	impossible. Even-even Trump don't have enough money
3	to do it. So let's try to have what we have and try
4	to make it do well, and use our energy fully. That's
5	our biggest integration. All these new technologies,
6	they're all wonderful, but you know what, most of it
7	is very much bleeding technology, but because it's
8	not easy. Like the gentleman said, to get that water
9	to run by itself or-or-or to be heated and cooled
10	down in the winter so it doesn't freeze or thermal
11	loads on the cells, the solar cells are still not up
12	to par. They're not to what we really need, and
13	again, there's many other things we can do, but it's
14	a lot of money for a kilowatt of energy. We already
15	have an infrastructure. We can't just change it
16	overnight. Let's use what we have the best there is.
17	Let's make our systems very efficient and very
18	integrated. Come to New York or any city in the
19	United States our technology, our heating technology
20	and our high technology dear Councilman is over 100
21	or 200 years old. We have not changed a bit.
22	Nothing has changed at all. They do make the boilers
23	in different packages. They make nice packages
24	outside, but the boiler, the heating system has not
25	changed one iota, and let's put it this way there is
ļ	

1	COMMITTEE ON ENVIRONMENTAL PROTECTION 84
2	some condensing technology and so forth that yes, but
3	compared to Europe, compared to Japan or even much
4	more as it compares to-to China, China is much
5	advanced than we are. We're throwing away money like
6	it's beyond belief. What is happening right here in
7	your buildings, New York City buildings. I have
8	examined many of your buildings, and it's a complete
9	waste, and you're not the only ones. You go down
10	Broadway, there's so much money being thrown away.
11	It's unbelievable. Not only that, the water is
12	wasted, and actually I brought this project 20 some
13	years ago to Con Edison. Con Edison made a plan with
14	me and JV to implement to use this technology. We
15	even have a patent together how to save all this
16	energy, a joint patent our company with Con Edison.
17	At the last moment the realized the way they
18	structured it financially if they're going to save
19	any money, they're not going to make more money.
20	They make money for every dollar they spend, not for
21	every dollar they save. The system is set up that
22	way. So we have to find a way to make it very
23	efficient to use the energy that we have. Yes, let's
24	use some new technology, but for us here in
25	Manhattan, we have to do whatever we have, and by the

1	COMMITTEE ON ENVIRONMENTAL PROTECTION 85
2	way, I am not just giving you another pretty face
3	here and giving you another baloney speech. I do
4	invite you to come to visit us. We are-we have an
5	installation right here at 233 Broadway, the
6	Woolworth Building. You're welcome to come. Our
7	factory is located at 4402 23rd Street in-close to
8	your district, Councilman. We make all our equipment
9	ourselves completely because unfortunately all of the
10	equipment you can't make, and you have to go to China
11	to make it. We manufacture everything ourselves, and
12	we're look forward to bring this product here to New
13	York and to implement it, and not only that,
14	financially speaking our products are very
14	inexpensive. You know why? We believe in what we
16	make. We're willing to do it as PPA. We're willing
17	to put it into your building and we guarantee that we
18	are-without you paying for it. It's on my dime.
19	I'll install it myself. This is my work.
20	CHAIRPERSON CONSTANTINIDES: I'll look
21	forward to seeing.
22	ROBERT KRAMER: Thank you.
23	CHAIRPERSON CONSTANTINIDES: I'll look
24	forward to seeing it. Thank you for your testimony.
25	Next up.

1	COMMITTEE ON ENVIRONMENTAL PROTECTION 86
2	ROBERT KRAMER: Am I excused?
3	CHAIRPERSON CONSTANTINIDES: I'm going to
4	probably ask questions, but can you stay?
5	ROBERT KRAMER: Okay, go ahead.
6	CHAIRPERSON CONSTANTINIDES: I want to
7	hear—go through the whole panel first. Sir.
8	KARTEK GOANAT: First off, good afternoon
9	and thank you for allowing me the time to testify
10	today. My name is Karket Goanat (sp?) and I'm here
11	to testify in support of Intro 1159 on behalf of the
12	New York City Environmental Justice Alliance, or NEJA
13	for short. Founded in 1991, NEJA is a non-profit
14	citywide membership network linking grassroots
15	organizations from low-income neighborhoods and
16	communities of color in their struggle for
17	environmental justice. NEJA empowers its member
18	organizations to advocate for improved environmental
19	conditions and against inequitable environmental
20	burdens. Through our efforts member organization
21	coalesce around specific common issues that threaten
22	the ability of low-income and communities of color to
23	thrive and coordinate campaigns designed to effect
24	city and state policies including energy policies
25	that directly affect these communities. Because the
l	

1	COMMITTEE ON ENVIRONMENTAL PROTECTION 87
2	number of NEJA member organizations come from
3	communities overburdened by greenhouse gas
4	emissions and co-pollutants from power plants
5	clustered in their neighborhood. Our organization is
6	a key advocate for the city's emission reductions-
7	reduction goals. NEJA was a member of the Building
8	Technical Working Group that analyzed the potential
9	greenhouse gas reduction pathways for the building
10	sector and supports the goal of reducing emissions
11	while achieving co-benefits such as increased public
12	health and job creation and energy efficiency
13	strategies, and the emerging renewable-renewable
14	energy economy. Excuse me. NEJA comments the New
15	York City Council's Committee on Environmental
16	Protection for holding a hearing on Intro 1159,
17	creating an opportunity for public comment on this
18	important milestone. We support an amendment to the
19	Administrative Code that requires feasibility studies
20	on the cost of installing solar thermal energy
21	systems on all buildings or structures owned by City
22	agencies and departments. Furthermore, we support
23	the requirement that all city-owned buildings install
24	solar thermal energy systems where they are cost-
25	effective. Through widespread installation of solar

1	COMMITTEE ON ENVIRONMENTAL PROTECTION 88
2	thermal systems in city buildings, the city will be
3	taking a strong step towards reducing the overall
4	energy demand from polluting sources. By extension
5	reducing overall energy demand from these sources can
6	have environmental health benefits in low-income
7	communities and communities of color where older and
8	more inefficient power plants have been historically
9	clustered and caused disproportionate public health
10	burdens. We also support the bill's public awareness
11	campaign around the multiple benefits of installing
12	solar-solar hot water systems. As we take bolder
13	steps to reduce our carbon footprint, the city should
14	guarantee protections for low-income neighborhoods
15	and communities of color. We encourage solar
16	installation feasibility studies include
17	considerations for equity and access for low-income
18	communities and communities of color. As solar
19	thermal-thermal installations proceed, the city
20	should partner with installer who commit to higher-
21	hiring locally and providing fair wages to their
22	workers. Parallel to any efforts in educating
23	property owners on the benefits of using solar hot
24	water systems, we need to create safeguards for rent
25	stabilized and rents-rent regulated buildings to

1	COMMITTEE ON ENVIRONMENTAL PROTECTION 89
2	ensure that families are not priced out of their
3	homes in communities through major capital
4	improvements, and just energy policies central to
5	NEJA work, and we look forward to a continued
6	collaboration with the city to mitigate the threats
7	of climate change. Thank you.
8	CHAIRPERSON CONSTANTINIDES: Thank you.
9	Appreciate your testimony and look forward to the
10	partnership. Thank. Mr. Alexander.(sic)
11	ALEXANDER WEISS: Good afternoon and
12	thank you for giving me the opportunity to testify.
13	My name is Alexander Weiss. I represent Green Apple
14	Solar, LPD, and I'm a certified solar thermal
15	installer. I'm also BPI certified in heating in
16	multi-family building auditing and small homes
17	auditing and envelope (sic) certified as well. Well,
18	Barry Tarevi (sp?) way back in the `60s spoke about
19	solar energy that it should be installed most-mostly
20	in the southwest where there's plenty of sun, and
21	then they would an net exporter of-of electricity.
22	I've done a lot of research in-in-in-in the
23	feasibility of it-of-of-of PV and-and-and solar
24	thermal, and in my humble opinion and everybody has
25	availability of the Internet to do their research.
I	

1	COMMITTEE ON ENVIRONMENTAL PROTECTION 90
2	Solar PV is—it works very well in the summertime. In
3	the winter barely if at all. That's just a fact.
4	You can't really fight the laws of physics as
5	somebody else very eloquently pointed out. The angle
6	of incidents and other things, it can be paired
7	possibly with-if it's-if it's-it' coupled with
8	cooling systems to take advantage of the sun, the sun
9	in the summertime. But solar thermal isis a proven
10	technology. It's been around for quite a while.
11	There are different kinds. There's a flat plate and
12	there's the-and there's evacuated tube. Again, the
13	information is all out there that-that solar thermal
14	is-I'm sorry, evacuated tube solar thermal is much
15	more viable in-in this-this latitude. It's about 41
16	something latitude, and wherever there's a cold
17	climate. Again, the laws of physics take over. It
18	moves from hot to cold and never reverse the second
19	law of physics, thermal dynamics, and—and a vacuum is
20	much better insulated than-than anything else. So a
21	flat plate and a collect works very well even better
22	than perhaps an evacuated tube in the summertime. In
23	the wintertime it's a no contest. Some of the
24	comments that were made over here I thought were a
25	little bit laughable. Electrification of steam

1	COMMITTEE ON ENVIRONMENTAL PROTECTION 91
2	heating systems with-with PV I don't understand how
3	that's possible given the-the nature of the
4	infrastructure that we have in New York City. Most
5	of the public buildings especially are 60, 70, 80
6	years old. They have large boilers with steam
7	systems. What are you going to do? Are you going to
8	rip that all out, and put in electric? It doesn't-it
9	makes absolutely no sense to me. Maybe I'm missing
10	something. I don't know. A lot of people mentioned
11	and it's quite correct in my view that every case is-
12	is-is-is different. The amount of hot water usage
13	develops it-it-it is relative to the size of the-of
14	the system design and even exact same buildings with
15	different populations will have different water
16	usage. So we have to really match the hot water
17	usage, which you can determine fairly well from the-
18	or at least you can get an idea by just, you know,
19	reading the meter, the-the water meter and get an
20	idea of how much water is being used by the building.
21	Everything needs maintenance even the brick walls
22	needs maintenance-maintenance. So I take exception
23	to some of the comments that were made that say that-
24	that solar hot water requires the high maintenance
25	system. It's-it's not-in my view it's just

1	COMMITTEE ON ENVIRONMENTAL PROTECTION 92
2	incorrect. I have a few systems installed in
3	Brooklyn. They require very little maintenance. The
4	only—the only moving part is the motor, and the
5	sensors are sometimes if they're not properly
6	protected will burn out, and then it will cause a
7	fault. But again, somebody else eloquently mentioned
8	that, you know, we have monitoring systems, and
9	everybody is connected to the Internet so we can
10	monitor these things very easily and—and maintain
11	them. Some of the systems that I have installed I
12	have maintenance contracts where I maintain them, and
13	I've also offered people I can train their own staff
14	and maintenance people to maintain those. They're
15	very simple to maintain. There are different ways
16	to-to install them. One of the problems that a lot
17	of the people that-that I've spoke to are concerned
18	about leakage-leakage in the roof when you installed
19	these systems. There are quite effective monitoring
20	systems that are used, that can be used to-to-to make
21	that less of a problem. One of the things that
22	should be-in my view should be implemented with these
23	public buildings or any building is the overall
24	thermal efficiency of the building. If you want to
25	reduce your thermal envelope or thermal load of-of
Į	

1	COMMITTEE ON ENVIRONMENTAL PROTECTION 93
2	the building, you can do it a number of different
3	ways. The-the weatherization-I work for
4	weatherization agencies, and one of the most cost-
5	effective measures is simply insulating the roof.
6	That makes a big difference, insulating the piping on
7	the-on the steam that's existing. One of the-one of
8	the uses of-of-of-of solar thermal, if you couple it
9	with an-with an existing system, is you can increase
10	the efficiency of the-of the tankless coil. If
11	you're putting pre-heated water into the tankless
12	coil, you lessen the number of times that the
13	equistat will call for the boiler to come on,
14	especially in the summer. And in the winter, it's
15	also a factor because if you lower the temperature,
16	if you-if you're pumping 40-40, you're pumping,
17	you're-you're-it's coming into pressure in 40 degree
18	water into the-into the-the-the boiler water. You're
19	going to reduce the-the temperature, and if you're
20	making steam at the same time, you're going to need a
21	lot of energy to bring back that—to bring back that
22	steam and to maintain pressure. It's well known fact
23	it takes 972 BTUs per pound to convert from 212 to
24	steam. So that's a big number. Maintenance, of
25	course, if you-if you-if you lessen the amount of

1	COMMITTEE ON ENVIRONMENTAL PROTECTION 94
2	times that the boiler comes on, you will-you will
3	reduce the maintenance. Somebody also mentioned the
4	design, design, design. If it's properly installed,
5	properly designed, the system will work very well
6	with little or no maintenance. That's all I have to
7	say. Thank your for the opportunity.
8	CHAIRPERSON CONSTANTINIDES: I want to
9	thank each and every one of you for your testimony,
10	and your time today. I appreciate your efforts, and
11	your time to come and comment on this legislation,
12	and your partnership in making our city greener and
13	more sustainable. So I look forward to meeting with
14	each of you and-and speaking more thoroughly on this
15	topic. So thank you.
16	ALEXANDER WEISS: Thank you. [background
17	comments]
18	CHAIRPERSON CONSTANTINIDES: Alright,
19	Josh Kellerman from ALIGN. Are you still in the
20	room, Josh, and Gary Goth, DC37 Retirees Association.
21	Are either of you still in the room? [background
22	comments] Okay, great. [pause] Great.
23	SAMARA SWANSTON: Can you please raise
24	your right hands? Do you swear or affirm to tell the
25	
	I

1 COMMITTEE ON ENVIRONMENTAL PROTECTION 95 2 truth, the whole truth and nothing but the truth 3 today? 4 I do. 5 CHAIRPERSON CONSTANTINIDES: Alright, go ahead. 6 7 Okay. 8 CHAIRPERSON CONSTANTINIDES: Thank you. 9 You sure nobody else wants to join me. [laughs] Your-your compatriot left early so-[laughs] 10 CHAIRPERSON CONSTANTINIDES: It's the 11 final panel that-that they couldn't wait us out. 12 13 JOSH KELLERMAN: Alright, thank you. 14 Thank you for the opportunity to testify today. My 15 name is Josh Kellerman. I work at ALIGN. The ALIGN 16 is for a greater New York. ALIGN is a community 17 labor coalition dedicated to creating good jobs, 18 vibrant communities and an accountable democracy for 19 all New Yorkers. I'm here to testify in support of 20 Intro 1159. ALIGN supports this bill because we believe that the city must act boldly and quickly to 21 address the threat of climate change. Natural gas 2.2 23 and fuel oil account for a significant portion of carbon emissions from city-owned buildings and on 24 25 site city buildings burn fossil fuel primarily for

1	COMMITTEE ON ENVIRONMENTAL PROTECTION 96
2	heat and hot water. Thus, finding alternative
3	sources for heating hot water is key to reducing our
4	carbon emissions and accordingly we support an
5	assessment of all city-owned buildings to determine
6	the feasibility and cost-effectiveness of this
7	technology. Of course we're need an all hands deck
8	plan to address climate change [coughs]. Thus solar
9	water heating should be assessed and implemented
10	where feasible. One thing I want to point out is it
11	seems that there-at this point there's no overall
12	assessment that takes into account all of the
13	competing potential rooftop uses such as solar PV,
14	solar thermal, green roofs, playgrounds, and creates
15	a plan for obtaining all of these beneficial uses
16	across the city through a comprehensive citywide
17	plan. So I'm curious sort of at this point. If we
18	find that there is a beneficial use or potential use
19	that's cost-effective for solar thermal on a
20	building, but there's also the opportunity for solar
21	PV, who makes the decision about what is implemented,
22	and is there a need to have some sort of advisory
23	group maybe that I can help to think through those
24	uses that has the interests of all of these competing
25	interests in mind. [coughs] In addition, if the

1	COMMITTEE ON ENVIRONMENTAL PROTECTION 97
2	city's solar PV installations have been any-any
3	indication we need to be paying more attention to
4	appropriate workforce development opportunities that
5	will—will ensure that we create good jobs for local
6	disadvantaged residents. [coughs] When the city
7	installed on 24 public schools over the last few
8	years using capital funds, our-our research uncovered
9	that only one union shop was utilized on five of
10	those schools. There also was no comprehensive
11	Workforce Development program in place to ensure that
12	low-income communities of color had the first crack
13	at those jobs. Changes are currently being made to
14	the Solar PV program so that future installations
15	create good local jobs and we commend the city and
16	the Council for making sure that happened, but we
17	hope that in the solar thermal installations on
18	public buildings can avoid these hiccups out of the
19	start gate. We also want to note that although all
20	buildings in the city need to eventually have some
21	form of on-site renewable energy, we should
22	prioritize Environmental Justice communities for the
23	first installations This will ensure that those
24	communities who had suffered-who have suffered the
25	brunt of an environmental pollution are the first to
ļ	

1	COMMITTEE ON ENVIRONMENTAL PROTECTION 98
2	be relieved of this burden. Working with the New
3	York City Environmental Justice Alliance, we are
4	developing criteria that can be used alongside
5	current site selection criteria to ensure that this
6	is a program that tackles climate change and
7	inequality at the same time. Finally, I want to note
8	that how these projects get financed is a very
9	important consideration. Reducing energy use should
10	save the city money not just reduce emissions. The-
11	the city currently uses two primary types of
12	financing, which you all are very familiar with,
13	power purchase agreements and capital funding. In
14	determining which path to take, the city should take
15	into account several considerations including whether
16	we want to prioritize public energy, whether we get
17	the best bang for our buck when we use private
18	financing and whether an appropriate cost benefit
19	analysis is used to determine when-which financing
20	source we use. All tolled, we suggest the city
21	emphasize public ownership and capital funding for
22	this work as it is a better tool for saving the city
23	money over the long run, and capital funding allows
24	the city to more effectively set the terms of
25	employment leading to better outcomes addressing
I	

1	COMMITTEE ON ENVIRONMENTAL PROTECTION 99
2	inequality. I will note that there are other
3	considerations when you use capital funding that that
4	funding is now no longer available for other capital
5	funding needs. So this needs to be sort of all put
6	into a really sold cost benefit analysis, and what
7	we've seen out of DCAS is they do have a cost benefit
8	analysis, but we think it's inadequate in addressing
9	all of these concerns together. So we look forward
10	to working with you to find the best solution for all
11	of this.
12	CHAIRPERSON CONSTANTINIDES: Fantast
13	comments. Thank you so much as always, and thank you
14	for everyone at ALIGN for your great work. Thank
15	you. Alright, seeing no other testimony, I will
16	first thank or committee staff. I want to thank
17	Samara Swanston our great legislative attorney who
18	always does a great job, our Policy Analyst Bill
19	Murray, both of which are indispensable to this
20	committee and get so much great work done. So thank
21	you both for your strong, strong efforts on behalf of
22	the city and the environment. Of course, our-our
23	Finance Analyst John Seltzer and on my staff my
24	Legislative Counsel Nick Rosowski (sp?)and
25	Legislative Staff John Benjamin. I just want to
	l

1	COMMITTEE ON ENVIRONMENTAL PROTECTION 100
2	thank everyone who testified today. We appreciate
3	your efforts. New York City, as I said before, to
4	reach 80 x 50 we have to deal with city-owned
5	buildings, we have to deal with buildings over a
6	million—over a million buildings in our city stock.
7	We have to do better, and looking at all technologies
8	whether that's solar PV, whether that's solar
9	thermal, geothermal, biofuel, wind, hydro. We're
10	going to continue as a committee to explore every
11	opportunity for us to green our communities, and when
12	it comes to Environmental Justice communities, we
13	will fight even harder to make sure that historic
14	uses in those communities are mitigated. So, with
15	that, I thank everyone who testified today for your
16	great efforts and looking forward to partnering and
17	getting this done, and with that, we'll close this
18	committee hearing. [gavel]
19	
20	
21	
22	
23	
24	
25	

CERTIFICATE

World Wide Dictation certifies that the foregoing transcript is a true and accurate record of the proceedings. We further certify that there is no relation to any of the parties to this action by blood or marriage, and that there is interest in the outcome of this matter.

Date _____March 11, 2017