

The New York City Council

Legislation Details (With Text)

File #:	Int 1	277-2016 Version : A	Name:	Conforming the New York city energy conservation code to recent amendments to the 2016 New York state energy code.
Туре:	Intro	oduction	Status:	Enacted
			In control:	Committee on Housing and Buildings
On agenda:	9/14	/2016		
Enactment date:	10/1	8/2016	Enactment #:	2016/125
Title:		v York city energy conservation	administrative code of the city of New York, in relation to conforming the ervation code to recent amendments to the 2016 New York state energy	
Sponsors:		naane D. Williams, Rafael S Barron, (by request of the M		James G. Van Bramer, Brad S. Lander, Ben Kallos, Ine
Indexes:				
Attachments:	14, 2 Test 9/26 to F (FIN	2016 - Stated Meeting Age timony 9/15/16, 7. Hearing 5/16, 10. Hearing Transcrip iles, 12. Committee Report	nda with Links t Transcript 9/15/ t 9/26/16, 11. Se - Stated Meetin t - Stated Meeti	t. No. 1277, 3. Int. No. 1277 - 9/14/16, 4. September o Files, 5. Committee Report 9/15/16, 6. Hearing 16, 8. Committee Report 9/26/16, 9. Hearing Testimony eptember 28, 2016 - Stated Meeting Agenda with Links g, 13. Fiscal Impact Statement, 14. Int. No. 1277-A ng 9-28-16, 16. Mayor's Letter, 17. Minutes of the al Law 125
Date	Ver.	Action By	Ac	tion Result
9/14/2016	*	City Council	In	troduced by Council
9/14/2016	*	City Council	Re	eferred to Comm by Council
9/15/2016	*	Committee on Housing a Buildings	nd La	id Over by Committee
9/15/2016	*	Committee on Housing a Buildings	nd He	earing Held by Committee
9/26/2016	*	Committee on Housing a Buildings	nd He	earing Held by Committee

		Buildings		
9/26/2016	*	Committee on Housing and Buildings	Amendment Proposed by Comm	
9/26/2016	*	Committee on Housing and Buildings	Amended by Committee	
9/26/2016	А	Committee on Housing and Buildings	Approved by Committee	Pass
9/28/2016	А	City Council	Approved by Council	Pass
9/28/2016	А	City Council	Sent to Mayor by Council	
10/18/2016	А	Mayor	Hearing Held by Mayor	
10/18/2016	А	Mayor	Signed Into Law by Mayor	
10/19/2016	А	City Council	Recved from Mayor by Council	
		T (NT)		

Int. No. 1277-A

By Council Members Williams, Salamanca, Van Bramer, Lander, Kallos and Barron (by request of the Mayor)

A Local Law to amend the administrative code of the city of New York, in relation to conforming the New York city energy conservation code to recent amendments to the 2016 New York state energy code.

Be it enacted by the Council as follows:

Section 1. Section 28-1001.1.1 of the administrative code of the city of New York, as added by local

law number 91 for the year 2016, is amended to read as follows:

§28-1001.1.1 Definition. As used in this chapter, the term "New York State Energy Code" means the New York State Energy Conservation Construction Code (the "New York State Energy Code"), constituting part 1240 of title 19 of the New York codes, rules and regulations (19 NYCRR Part 1240), and the publications incorporated by reference in such part, promulgated on [April 6, 2016] <u>September 21, 2016</u>, by the State Fire Prevention and Building Code Council pursuant to Article 11 of the New York State Energy Law.

§ 2. The New York city amendments to Table C403.2.3(3) of the New York state energy code, as added

by local law 91 for the year 2016, are amended to read as follows:

Table C403.2.3(3) MINIMUM EFFICIENCY REQUIREMENTS: ELECTRICALLY OPERATED PACKAGED TERMINAL AIR CONDITIONERS, PACKAGED TERMINAL HEAT PUMPS, SINGLE-PACKAGE VERTICAL AIR CONDITIONERS, SINGLE-PACKAGE VERTICAL HEAT PUMPS, ROOM AIR CONDITIONERS, AND ROOM AIR-CONDITIONER HEAT PUMPS

Delete Table C403.2.3(3) in its entirety and replace with a new Table C403.2.3(3) to read as follows:

TABLE C403.2.3(3)

MINIMUM EFFICIENCY REQUIREMENTS: ELECTRICALLY OPERATED PACKAGED TERMINAL AIR CONDITIONERS, PACKAGED TERMINAL HEAT PUMPS, SINGLE-PACKAGE VERTICAL AIR CONDITIONERS, SINGLE-PACKAGE VERTICAL HEAT PUMPS, ROOM AIR CONDITIONERS AND ROOM AIR-CONDITIONER HEAT PUMPS

C -	SIZE CATEGORY (INPUT)	SUBCATEGORY OR RATING CONDITION		TEST PROCEDURE ª
PTAC (cooling mode) standard size	All Capacities	95°F db outdoor air	14.0 - (0.300 × Cap/1000) EER ^c	AHRI 310/380
PTAC (cooling mode) nonstandard size ^b	All Capacities	95°F db outdoor air	10.9 - (0.213 × Cap/1000) ^[c] EER	
PTHP (cooling mode) standard size	All Capacities	95°F db outdoor air	14.0 - (0.300 × Cap/1000) ^[c] EER	

File #: Int 1277-2016, Version: A

		<i></i>		1
PTHP (cooling	All Capacities	95°F db outdoor air	10.8 - (0.213 ×	
mode)			Cap/1000) ^[c] EER	
nonstandard size ^{b}				
PTHP (heating	All Capacities	-	3.7 - (0.052 ×	
mode) standard			$Cap/1000)^{[c]}COP_{I}$	
size				
PTHP (heating	All Capacities	-	2.9 - (0.026 ×	
mode)	1		$Cap/1000)^{[c]}COP_{I}$	
nonstandard size ^b				
SPVAC (cooling	< 65,000 Btu/h	95°F db/75°F wb	10.0 EER	AHRI 390
mode)		outdoor air		
,	> 65,000 Btu/h	95°F db/75°F wb	10.0 EER	
	and $< 135,000$	outdoor air	10.0 LLR	
	Btu/h			
		95°F db/75°F wb	10.0 EER	
	and $< 245,000$ Btu/II	outdoor air	10.0 EEK	
	Btu/h			
SPVHP (cooling	< 65,000 Btu/h	95°F db/75°F wb	10.0 EER	
mode)	< 03,000 Blu/II	outdoor air	IU.U EEK	
mode)	5 (5 000 D) /1			
	\geq 65,000 Btu/h	95°F db/75°F wb	10.0 EER	
	and $< 135,000$	outdoor air		
	Btu/h			
		95°F db/75°F wb	10.0 EER	
	and < 245,000	outdoor air		
	Btu/h			
SPVHP (heating	< 65,000 Btu/h	47°F db/43°F wb	$3.0 \operatorname{COP}_H$	AHRI 390
mode)		outdoor air		
	≥ 65,000 Btu/h	47°F db/43°F wb	$3.0 \operatorname{COP}_H$	
	and < 135,000	outdoor air		
	Btu/h			
	≥ 135,000 Btu/h	47°F db/75°F wb	$3.0 \operatorname{COP}_H$	
	and < 245,000	outdoor air		
	Btu/h			
SPVAV (cooling	[<] < 30.000	95°F db/75°F wb	9.2 EER	
mode)	Btu/h	outdoor air		
nonweatherized				
space constrained				
		95°F db/75°F wb	9.0 EER	
	and $[<] \le 36,000$			
	Btu/h			
SPVHP (cooling	[<] ≤ 30,000	95°F db/75°F wb	9.2 EER	
mode)	Btu/h	outdoor air		
nonweatherized				
space constrained				
11	1	I	I	I I

File #: Int 1277-2016, Version: A

		9.0 EER	
and $[<] \leq 36,000$	outdoor air		
Btu/h			
<] < 30.000	47°F db/43°F wb	$3.0 \operatorname{COP}_H$	
-			
<i>700/11</i>			
20.000 D/ /1	4705 11 / 4205 1		
		$3.0 \operatorname{COP}_H$	
	outdoor air		
3tu/h			
< 6,000 Btu/h	-	11.0 CEER	10 CFR Part 430
> 6.000 Ptu/h		11 0 CEED	
	-	11.0 CLEK	
<i>,</i>			
<u>></u> 8,000 Btu/h	-	10.9 CEER	
ind < 14,000			
Btu/h			
> 14.000 Btu/h	-	10.7 CEER	
		10.7 OLLIC	
· · · · · · · · · · · · · · · · · · ·	-	9.4 CEER	
3tu/h			
25,000 Btu/h	-	9.0 CEER	10 CFR Part 430
< 6.000 Btu/h	_	10.0 CEER	
(000 D/ /1			
-	-	10.0 CEER	
<i>,</i>			
3tu/h			
≥ 8,000 Btu/h	-	9.6 CEER	
ind < 11,000			
Btu/h			
		95CEER	
-	-	J.J CLER	
· ·			
-	-	9.3 CEER	
and < 20,000			
Btu/h			
	nd $[<] \le 36,000$ Btu/h $<] \le 30,000$ Btu/h $<] \le 30,000$ Btu/h nd $[<] \le 36,000$ Btu/h < 6,000 Btu/h nd $< 14,000$ Btu/h < 14,000 Btu/h nd $< 20,000$ Btu/h nd $< 20,000$ Btu/h nd $< 24,000$ Btu/h < 25,000 Btu/h nd $< 8,000$ Btu/h < 25,000 Btu/h nd $< 8,000$ Btu/h < 25,000 Btu/h nd $< 8,000$ Btu/h < 25,000 Btu/h nd $< 8,000$ Btu/h < 20,000 Btu/h nd $< 24,000$ Btu/h < 25,000 Btu/h nd $< 8,000$ Btu/h < 20,000 Btu/h nd $< 11,000$	and $[<] \le 36,000$ outdoor air Stu/h 47°F db/43°F wb > 30,000 Btu/h 6,000 Btu/h > 6,000 Btu/h - > 6,000 Btu/h - > 6,000 Btu/h - > 6,000 Btu/h - > 8,000 Btu/h - > 14,000 Btu/h - > 20,000 Btu/h - > 25,000 Btu/h - > 6,000 Btu/h - > 6,000 Btu/h - > 8,000 Btu/h - > 11,000 Btu/h - > 14,000 Btu/h - > 14,000 Btu/h -	nd $[<] \le 36,000$ outdoor air Stu/h 47°F db/43°F wb 3.0 COP _H $< 30,000$ Btu/h 47°F db/43°F wb 3.0 COP _H $< 30,000$ Btu/h 47°F db/43°F wb 3.0 COP _H $< 30,000$ Btu/h 47°F db/43°F wb 3.0 COP _H $< 30,000$ Btu/h - 11.0 CEER $< 6,000$ Btu/h - 11.0 CEER $< 6,000$ Btu/h - 10.9 CEER $< 6,000$ Btu/h - 10.7 CEER $< 8,000$ Btu/h - 10.7 CEER $< 14,000$ Btu/h - 9.4 CEER $< 20,000$ Btu/h - 9.0 CEER $< 20,000$ Btu/h - 10.0 CEER $< 20,000$ Btu/h - 9.0 CEER $< 6,000$ Btu/h - 10.0 CEER $< 6,000$ Btu/h - 9.6 CEER $< 8,000$ Btu/h - 9.6 CEER $< 8,000$ Btu/h - 9.5 CEER $< 11,000$ Btu/h - 9.5 CEER $< 14,000$ Btu/h - 9.3 CEER

Room air- conditioner heat pumps, with louvered sides	< 20,000 Btu/h	-	9.8 CEER	10 CFR Part 430
	≥ 20,000 Btu/h	-	9.3 CEER	
Room air- conditioner heat pumps, without louvered sides	< 14,000 Btu/h	-	9.3 CEER	
	≥ 14,000 Btu/h	-	8.7 CEER	
Casement-only	All capacities	-	9.5 CEER	
Casement-slider	All capacities	-	10.4 CEER	

For SI: 1 British thermal unit per hour = 0.2931 W, $^{\circ}\text{C} = [(^{\circ}\text{F}) - 32]/1.8$, wb = wet bulb, db = dry bulb.

"Cap" = The rated cooling capacity of the project in Btu/h. Where the unit's capacity is less than 7000 Btu/h, use 7000 Btu/h in the calculation. Where the unit's capacity is greater than 15,000 Btu/h, use 15,000 Btu/h in the calculations.

a. Chapter 6 contains a complete specification of the referenced test procedure, including the referenced year version of the test procedure.

b. Nonstandard size units must be factory labeled as follows: "MANUFACTURED FOR NONSTANDARD SIZE APPLICATIONS ONLY; NOT TO BE INSTALLED IN NEW STANDARD PROJECTS." Nonstandard size efficiencies apply only to units being installed in existing sleeves having an external wall opening of less than 16 in. high or less than 42 in. wide and having a cross-sectional area less than 670 in.².
c. Before January 1, 2015 the minimum efficiency shall be 13.8 - (0.300 x Cap/1000) EER.

§ 3. Section 28-1001.2.2 of the administrative code of the city of New York, as added by local law 91

for the year 2016, is amended by adding New York city amendments to Section C406.7.1 of the New York

State energy code to read as follows:

C406.7.1 Load Fraction.

Section C406.7.1 - Revise the first sentence of Section C406.7.1 to read as follows:

The building service water-heating system shall have one or more of the following that are sized to provide not less than 60 percent of hot water requirements, or sized to provide 100 percent of hot water requirements if the building shall otherwise comply with Section C403.4.5.

§ 4. Section 28-1001.2.2 of the administrative code of the city of New York, as added by local law 91

for the year 2016, is amended by adding New York city amendments to Section 4.2.1.1 of the New York State

energy code to read as follows:

Section 4 - ADMINISTRATION AND ENFORCEMENT

4.2.1.1 New Buildings.

Section 4.2.1.1 - Delete Section 4.2.1.1 in its entirety and replace with a new Section 4.2.1.1 to read as follows:

New buildings shall comply with either the provisions of

a. Section 5, "Building Envelope"; Section 6, "Heating, Ventilating, and Air Conditioning"; Section 7, "Service Water Heating"; Section 8, "Power"; Section 9, "Lighting"; and Section 10, "Other Equipment"; or

b. Section 11, "Energy Cost Budget Method"; or

c. Appendix G, "Performance Rating Method."

When using Appendix G, the Performance Cost Index (PCI) shall be less than or equal to the Performance Cost Index Target (PCIt) when calculated in accordance with the following:

 $\underline{PCI_t} = (\underline{BBUEC} + (\underline{BPF \ x \ BBREC}))/\underline{BBP}$

Where:

<u>PCI = Performance Cost Index calculated in accordance with Section G1.2.</u>

<u>BBUEC = Baseline Building Unregulated Energy Cost. The portion of the annual energy cost of a baseline building design that is due to unregulated energy use.</u>

<u>BBREC</u> = Baseline Building Regulated Energy Cost. The portion of the annual energy cost of a baseline building design that is due to regulated energy use.

<u>BPF</u> = Building Performance Factor from Table 4.2.1.1. For building area types not listed in Table 4.2.1.1 use "All others." Where a building has multiple building area types, the required BPF shall be equal to the area-weighted average of the building area types.

<u>BBP = baseline building performance.</u>

Regulated energy cost shall be calculated by multiplying the total energy cost by the ratio of regulated energy use to total energy use for each fuel type. Unregulated energy cost shall be calculated by subtracting regulated energy cost from total energy cost.

§ 5. The New York city amendments to Table 6.8.1-4 of the New York state energy code, as added by

local law 91 for the year 2016, are amended to read as follows:

 Table 6.8.1-4 Electrically Operated Packaged Terminal Air Conditioners, Packaged Terminal Heat

 Pumps, Single-Package Vertical Air Conditioners, Single-Package Vertical Heat

 Pumps, and Room Air-Conditioner Heat

 Pumps-Minimum Efficiency Requirements

Revise Table 6.8.1-4 to read as follows:

TABLE 6.8.1-4

Electrically Operated Packaged Terminal Air Conditioners, Packaged Terminal Heat Pumps, Single-Package Vertical Air Conditioners, Single-Package Vertical Heat Pumps, Room Air Conditioners, and Room Air-Conditioner Heat Pumps-Minimum Efficiency Requirements

Equipment Type	Size Category	Subcategory or Rating Condition	Minimum Efficiency	Test Procedure ^a
PTAC (cooling mode) standard size	All capacities	95°F db outdoor air	14.0 - (0.300 × Cap/1000) ^c	AHRI 310/380
PTAC (cooling mode) nonstandard size ^b	All capacities	95°F db outdoor air	10.9 - (0.213 × Cap/1000)° EER	-
PTHP (cooling mode) standard size	All capacities	95°F db outdoor air	14.0 - (0.300 × Cap/1000) ^c	_
PTHP (cooling mode) nonstandard size ^b	All capacities	95°F db outdoor air	10.8 - (0.213 × Cap/1000) ^c	_
PTHP (heating mode) standard size	All capacities		3.7 - (0.052 × Cap/1000)°COP _H	_
PTHP (heating mode) nonstandard size ^b	All capacities		2.9 - (0.026 × Cap/1000)°COP _H	-
SPVAC (cooling mode)	< 65,000 Btu/h	95°F db/75°F wb outdoor air	10.0 EER	AHRI 390
	≥ 65,000 Btu/h and < 135,000 Btu/h	95°F db/75°F wb outdoor air	10.0 EER	_
	≥ 135,000 Btu/h and < 245,000 Btu/h	95°F db/75°F wb outdoor air	10.0 EER	_
SPVHP (cooling mode)	< 65,000 Btu/h	95°F db/75°F wb outdoor air	10.0 EER	-
	≥ 65,000 Btu/h and < 135,000 Btu/h	95°F db/75°F wb outdoor air	10.0 EER	-
	≥ 135,000 Btu/h and < 245,000 Btu/h	95°F db/75°F wb outdoor air	10.0 EER	_
SPVHP (heating mode)	< 65,000 Btu/h	47°F db/43°F wb outdoor air	3.0 COP _H	_

				_
	≥ 65,000 Btu/h and < 135,000 Btu/h	47°F db/43°F wb outdoor air	3.0 COP _H	
	≥ 135,000 Btu/h and < 245,000 Btu/h	47°F db/43°F wb outdoor air	3.0 COP _H	-
SPVAC (cooling mode), nonweatherized space constrained	[<]≤30,000 Btu/h	95°F db/75°F wb outdoor air	9.2 EER	AHRI 390
	<pre>> 30,000 Btu/h and [<]≤ 36,000 Btu/h</pre>	95°F db/75°F wb outdoor air	9.0 EER	-
SPVHP (cooling mode) , nonweatherized space constrained	[<]≦ 30,000 Btu/h	95°F db/75°F wb outdoor air	9.2 EER	
	> 30,000 Btu/h and [<]≤ 36,000 Btu/h	95°F db/75°F wb outdoor air		-
SPVHP (heating mode), nonweatherized space constrained	[<] <u>≤</u> 30,000 Btu/h	47°F db/43°F wb outdoor air	3.0 COP _H	
	> 30,000 Btu/h and [<] <u>≤</u> 36,000 Btu/h	47°F db/43°F wb outdoor air	3.0 COP _H	_
Room air conditioners, with louvered sides	< 6,000 Btu/h		11.0 CEER	10 CFR Part 430
	≥ 6,000 Btu/h and < 8,000 Btu/h		11.0 CEER	-
	≥ 8,000 Btu/h and < 14,000 Btu/h		10.9 CEER	-
	≥ 14,000 Btu/h and < 20,000 Btu/h		10.7 CEER	-
	≥ 20,000 Btu/h and < 24,000 Btu/h		9.4 CEER	-
	≥25,000 Btu/h		9.0 CEER	-

File #: Int 1277-2016, Version: A

Room air conditioners, without louvered sides	< 6,000 Btu/h	10.0 CEER	10 CFR Part 430
	≥ 6,000 Btu/h and < 8,000 Btu/h	10.0 CEER	
	≥ 8,000 Btu/h and < 11,000 Btu/h	9.6 CEER	
	≥ 11,000 Btu/h and < 14,000 Btu/h	9.5 CEER	
	≥ 14,000 Btu/h and < 20,000 Btu/h	9.3 CEER	
Room air	≥ 20,000 Btu/h < 20,000 Btu/h	9.4 CEER 9.8 CEER	
conditioner heat pumps, with louvered sides	· 20,000 Dtu/II	J.0 OLLIK	
	≥ 20,000 Btu/h	9.3 CEER	10 CFR Part 430
Room air conditioner heat pumps, without louvered sides	< 14,000 Btu/h	9.3 CEER	
	≥ 14,000 Btu/h	8.7 CEER	10 CFR Part 430
Casement-only	All capacities	9.5 CEER	10 CFR Part 430
Casement-slider	All capacities	10.4 CEER	
G (* 10 (*		1 1 1 4 6 1	

a. Section 12 contains a complete specification of the referenced test procedure, including the referenced year version of the test procedure.

b. Nonstandard size units must be factory labeled as follows: "MANUFACTURED FOR NONSTANDARD SIZE APPLICATIONS ONLY; NOT TO BE INSTALLED IN NEW STANDARD PROJECTS." Nonstandard size efficiencies apply only to units being installed in existing sleeves having an external wall opening of less than 16 in. high or less than 42 in. wide and having a cross-sectional area less than 670 in.⁴.

c. "Cap" means the rated cooling capacity of the product in Btu/h. If the unit's capacity is less than 7000 Btu/h, use 7000 Btu/h in the calculation. If the unit's capacity is greater than 15,000 Btu/h, use 15,000 Btu/h in the calculation.

§ 6. The New York city amendments to Section R202 of the New York state energy code, as added by

local law 91 for the year 2016, are amended to read as follows:

SECTION R202 GENERAL DEFINITIONS

Delete the definitions of "2016 Uniform Code Supplement," "2015 International Building Code (As Amended)," "2015 International Fire Code (As Amended)," "2015 International Fuel Gas Code (As Amended)," "2015 International Mechanical Code (As Amended)," "2015 International Plumbing Code (As Amended)," "2015 International Property Maintenance Code (As Amended)," and "2015 International

Residential Code (As Amended)."

Revise the definition of "Approved" after the definition of "Alteration," to read as follows:

APPROVED. See Section 28-101.5 of the Administrative Code.

Add a new definition of "Approved agency" after the definition of "Approved," to read as follows:

APPROVED AGENCY. See Section 28-101.5 of the Administrative Code.

Delete the definitions of "ASHRAE 90.1-2013" and "ASHRAE 90.1-2013 (As amended)" after the definition of "Area weighted average."

Add a new definition of "Authority having jurisdiction" after the definition of "Area weighted average" to read as follows:

AUTHORITY HAVING JURISDICTION. The commissioner or the commissioner's designee.

Revise the definition of "Building site" after the definition of "Building," to read as follows:

BUILDING SITE. A contiguous area of land that is under the ownership or control of one entity.

Revise the definition of "Building thermal envelope" after the definition of "Building [site] <u>system</u>," to read as follows:

BUILDING THERMAL ENVELOPE. The exterior walls (above and below grade), floor, roof, and any other building elements that enclose conditioned space or provide a boundary between conditioned space and exempt or unconditioned space.

Revise the term "Code official" after the definition of "Climate Zone," to read as follows:

CODE OFFICIAL. The commissioner or the commissioner's designee.

Delete the definition of "Energy code", after the definition of "Energy Analysis."

Add a new definition of "Grade plane" after the definition of "General lighting," to read as follows:

GRADE PLANE. A reference plane representing the average of finished ground level adjoining the building at exterior walls. Where the finished ground level slopes away from the exterior walls, the reference plane shall be established by the lowest points within the area between the building and the lot line or, where the lot line is more than 6 feet (1829 mm) from the building, between the building and a point 6 feet (1829 mm) from the building.

Add a new definition of "Lead energy professional" after the definition of "Labeled," to read as follows:

LEAD ENERGY PROFESSIONAL. The registered design professional who signs and seals the energy analysis for an entire project. Such individual may be the same registered design professional who signs and seals the design drawings for the same project.

Add new definitions of "Professional certification" and "Project" after the definition of "Manual," to read as follows:

PROFESSIONAL CERTIFICATION. See Section 28-101.5 of the Administrative Code.

PROJECT. A design and construction undertaking comprised of work related to one or more buildings and the site improvements. A project is represented by one or more plan/work applications, including construction documents compiled in accordance with Section 107 of the New York City Building Code, that relate either to the construction of a new building or buildings or to the demolition or alteration of an existing building or buildings. Applications for a project may have different registered design professionals and different job numbers, and may result in the issuance of one or more permits.

Delete the definition of "Uniform Code."

§ 7. The New York city amendments to the entry for "NYS", of the New York state energy code, as

added by local law 91 for the year 2016, are amended to read as follows

NYS	New York Department of State One Commerce Plaza, 99 Washington Ave Albany, NY 12231-0001	
Standard reference Title number		Referenced in code section number
BCNYS-10 ECCCNYS-16	Building Code of New York State	R202
ECCENTS- 10	New York State Energy Conservation Construction Code	CH1 (Intro Statement), 101.1.1, 101.2.2, [101.3, C202] <u>R202</u>

§ 8. This local law takes effect on October 3, 2016, and applies to applications filed on and after October 3, 2016, but if it becomes a law after October 3, 2016, it takes effect immediately, and is retroactive to and shall be deemed to have been in full force and effect on and after October 3, 2016, and shall apply to applications filed on and after October 3, 2016.